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ABSTRACT OF THE  DISSERTATION 

Parametric Integer Programming 

by 

Robert Milton Nauss 

Doctor of Philosophy in Management 

University of California,  Los Angeles,   1974 

Professor Arthur M.  Geoffrion,  Chairman 

A parametric integer  linear program  (PILP)  may be defined as a 

family of closely related integer linear programs   (ILP).     Within this 

definition we incorporate  not only continuous  scalar parameterizationsi 

but also finite parameterizations.     These may  include  an  ILP with a 

finite number of objective  functions or right hand sides or constraint 

matrices or any combination of thco^. 

A general  framework  for PILP is presented.     It begins by outlining 

the need for PILP algorithms.     Basic solution methodologies  are ex- 

plained and two rudimentary approaches  for the PILP  are  stated.     The- 

oretical properties  for special parameterizations are proved,  and 

techniques  for improving algorithmic efficiency are  discussed.    The 

framework concludes with an examination of underlying  factors which 

intimately relate to the  scheduling of solution priorities in a PILP 

algorithm. 

Three special PILP problem classes are studied includinc, the 0-1 

knapsack,  generalized assignment,  and capacitated facility location 

problems.    Algorithms  are  presented,  computational  results are cited, 

and conclusions  are drawn  concerning the most efficient  approaches. 
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As a by-product of these PILP algorithms, efr%'cient algorithms for the 

corresponding ILPs in each problem class are also developed. Finally, 

an approach for the general PILP is proposed, and directions for future 

research are given. 
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I.  INTRODUCTION 

A parametric Integer linear program (PILP) may be defined as a 

family of closely related integer linear programs (JLP).  Parametric 

linear programming (PLP) theory is firmly entrenched, and a parametric 

capability is provided in most commercial linear progranming (LP) 

packages. PILP, on the other hand, is a virgin field.  This is natural 

since until recently methods for solving ILPs were not efficient. 

However in the put few years the state-of-the-art for ILP has blossomed 

forth to such an extent that research on PILP solution techniques may 

be undertaken with some feeling of optimism. 

VIP  is traditionally thougbt of as varying a scalar parameter 

continuously over a specified range, resulting in a continuum of 

objective functions or of right hand sides {resource allocations). 

However, it is not used as extensively as one might think.  This is 

partly due to the fact that the solution output generally contains much 

more information them management wants or needs, and partly because 

very small changes in the data are often not of interest.  Rather, 

management generally desires the solution to a finite number of revised 

models.  In the interest of solving the entire collection of problems 

efficiently, the analyst generally uses the optimal LP basis for one 

problem as an initial basis for a revised problem. 

Analogously, while continuous parameterization is of some interest 

in HLP, the definition of PILP should be expanded to include finite 

parameterizations.  Specifically, one mny v^ry  a parameter over a fixed 

number of points instead of over a continuous range. This results in a 
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finite number of objective  functions or right hand sides.     An example 

is a capital budgeting problem which is modeled as an ILP.     Since the 

precise cost of capital   is rarely known  (generally an educated guess 

is made), a logical approach would be to generate an objective function 

for each cf a series of estimated coots of capital.     Using this finite 

set of objective functions,  a finite number of ILPs   (which heretofore 

had to be solved independently)   is transformed into a PILP with a finite 

number of objective  functions.    Another type of parameterization which 

should be included in the definition is varying the objective function, 

the right hand side,  and/or the constraint coefficients simultaneously. 

Varying the constraint coefficients could also be defined to include 

adding or deleting variables and constraints.    PILP,  then, may be 
■ 

divided into three broad categories: 

parameterization over a finite number of points   (includinc, 

simultaneous changes in the objective function,  right hand . 

side, and constraint coefficients) 

one parameter varied continuously over a specified -ange 

two or more parameters varied continuously over specified 

ranges. 

Due to the increased complexity of the third category we shall address 

only the first two. 

Mathematical representations of parameterizations  for the two 

categories to be addressed are given below.    Let x be an n-vector,  b 

an m-vector, and A an m*n matrix. 

ifii -  -- -- ■ -^'— .■  .     .    . .__, _        ^       _       ^ mttmmammm 
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Finite parameterization 

For k « l,...^ solve: 

min (c + f, )x 
k 

(A + Dk)x >_ (b + rk) 

x.  integer,  j  e J 

where  f ,  D  ,   r    are conformable with c,  A, b respectively. 

Continuous parameterizations 

For V 9 e   [0,1]   solve: 

min (c + 9f)x 

Ax ^ b 

x.   integer,  j  e J 

and for V 6 c   [0,1]  solve: 

min ex 

Ax > b + or 

x.  integer,   j  e J 

where  f,  r are conformable with c,  b respectively and where  6 is a 

scalar.    Of course, in the finite case the parameterization may be 

confined to only the objective function, or the right hand side,  or 

the constraint matrix. 

At this point some mention should be made of work which has already 

been done in this field.     It appears that Rocdman   [1972,1973]  was the 

first to do any computational work in the area.    Basically he has devised 

a method for one-atM-time  (e.g.,  one cost coefficient or one resource) 

sensitivity analysis utilizing the fathomed nodes in the branch and bound 

tree generated for the ILP.    Bowman   [1974]  has addressed ILP sensitivity 

i^MM ^^Hk^BMMMMMMMI —— -—   ■    ■     ■ ■..■..-— 



■ IIPI^ Pll.niiiii^. in.,,! .,..l-^-_^. 
" II—WT I    «,1 !l II Jin 

WWMWmnwinmiWfW'THiwniwiiwi n m ii «ww 

- "    ■'■w" 

from a group theoretic point of view.    However» the practicality of his 

method has not yet been demonstrated.    Noltemeier [1970] has done  some 

theoretical work in the area of ILP sensitivity, but he has not performed 

any computational studies.    Piper and Zoltners  [1973b]  have attacked the 

problem of solving closely related ILPs by finding a set of the k best 

feasible solutions to an ILP.    Sufficiency tests are proposed, which if 

passed,  assure that an optimal solution to a revised ILP remains in the 

set.    A recent paper by Radke  [1974]   is concerned with continuity theory 

in mixed integer programming.    While it is essentially a theoretical 

treatise,  it does prescribe methods  for eliminating the bogey of dis- 

continuity in some problems. 

The plan jf the paper is as  follows.     In the remainder of this 

chapter the   lotivation for studying PILP is outlined by presenting types 

of analysis i-." which a PILP formulation may be effective.    Basic 

solution methocLVnies for PILP are presented,  and two rudimentary 

algorithms are givm.     Characteristics and properties of special 

parameterizations are given in chapter II,  and in chapter III problem 

dependent techniques for improving algorithmic performance are  set forth. 

Factors affecting the scheduling of solution priorities for the PILP are 

examined in chapter IV,  and three different priority schemes are pre- 

sented.     In chapters V, VI,  and VII the ideas and results of chapters 

II-IV are applied to special problem classes including the 0-1 knapsack 

problem,  the generalized assignment problem,  and the capacitated facility 

location problem.    Algorithms are stated,  computational result? cited, 

and conclusions drawn concerning the most efficient algorithms  for each 

problem class.    Finally in chapter VIII em approach for the general PILP 
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is proposed, and directions for future research are given. 

We advise the reader that problem notations remain valid for 

individual chapters only. 

A.  The Need for PILP Algorithms 

Oftentimes in practical ILP applications, finding an "optimal" 

solution to a model is not the only requirement. Managers may also be 

interested in solutions which are close to optimal, or they may want to 

know what happens if a certain change is made in the model.  Some cost 

coefficients or right hand sides may not be known with certainty, and 

hence the manager must know how the optimal solution behaves as these 

parameters are varied in the model.  Rarely, then, is an optimal solution 

sufficient for the needs of management.  In most applications various 

types of analysis must be done, and many of them can be classified under 

the broad term, PILP. This is because they satisfy the criteria of 

being a family of closely related ILPs.  Quite a few types of analysis 

are mentioned in Geoffrion [1974a].  These along with some others are 

given below. 

•  Sensitivity analysis; When probleu, data in an ILP is not known pre- 

cisely, point estimates must be used in the model. Varying this data 

over a range of estimates allows management to determine how sensitive 

an optimal solution and value are to changes in the data. 

Shadow price analysis:  In every linear programming solution, shadow 

prices are available from the final tableau. These prices reflect the 

value of an extra unit of resource.  Unfortunately, reliable shadow 

prices are not available in ILP. By varying a right hand side coeffi- 

•MMM -- ilii—ll ■— i 
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cient and observing how the optimal value changes,  it is possible to 

get an approximation of the value of an ex-tra unit of a particular 

resource. 

Tradeoff analysis;    When two or more criteria are reflected in a 

model, management must know the tradeoffs  involved in balancing one 

criteria against another.    For example,  a tradeoff curve between 

customer service and total cost in a distribution system depicts how a 

change in customer service affects total distribution cost.     Such an 

analysis would be done by varying the customer service parameters  in 

the model over a suitable range. 

Continuity analysis   [Radke  19741:     In linear programming,  continuity 

of the optimal solution value with respect to problem data is generally 

taken for granted.     In integer programming, however, serious disconti- 

nuities    are more likely to occur.    The analyst is interested in  finding 

sufficient conditions for which continuity holds.    Failing this,  he 

would like to identify points of serious discontinuity.     If a disconti- 

nuity exists and it is an acrurate  representation of the real world 

system,  he may want to alter the problem data in order to improve  the 

objective value.     If it is not an accurate  representation,  a reformula- 

tion of the model may be required so that  it more accurately represents 

the real world system.     The task of identifying discontinuities or 

verifying that there are none  in the region of internst can often be 

accomplished by systematically varying problem data over some neighbor- 

hood.    Thus a number of closely related problems may be fomulated as 

a PILP. 

Contingency analysis;     ILP models must make specific assumptions, 

- -- i 
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and hence cannot handle all possible "states of nature."    For instance, 

the uncertainty associated vith major unlikely events might best be 

treated externally to the model via modified formulations of the model. 

Thus a number of ILPs,  each of which corresponds  to some contingency, 

might be solved as a PILP. 

Implementation priority analysis;    Management needs to measure the 

importance of various  components of an optimal  solution.    This  informa- 

tion is used in assigning implementation priorities to various contem- 

plated changes in the  real world system.     If some individual changes 

result in only marginal savings,  they might be deferred until some 

later time, or possibly might not be implemented at all.    Those changes 

which produce  significant savings,   however,  might be implemented in the 

near future with an eye toward overall corporate restraints such as 
i 

limited capital expenditures in a given period.  Since each priority 

formulation is an ILP, it is clear that a number of such formulations 

may be solved as a PILP. 

Each of these types of analysis demonstrates a need for solving 

closely related ILPs efficiently.  The goal of this study is to satisfy 

this need. 

B.  Basi'- Methodologies for Solving the PILP 

It is natural to look to ILP solution methodology for ideas on form- 

ulating a solution methodology for PILP.  ILP solution techniques tend 

to fall into three distinct categories:  cutting plane, group theory, 

»r.ü bianch and bound.  Garfinkel and Nemhauser [1972] give a detailed 

account of each of these categories. 

With one notable exception (Martin [1963]), cutting plane techniques 
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have not been overly successful in practice.     Since cutting plane methods 

are dual based, no feasible solutions are generated along the way to 

finding an optimal solution.    This is a serious drawback since even 

though finite convergence is assured for many cutting plane algorithms, 

no upper bound can be put on the number of iterations required to find 

an opti- «an.    This lack of an upper bound on the convergence of the 

algorithms,  coupled with the inability to systematically generate 

feasible solutions, generally makes cutting plane methods unattractive 

in real world ILP applications. 

Group theoretic methods have been applied to pure ILPs for the most 

part.    While some advances have been made,  computational experience has 

shown that group methods are not as effective as the branch and bound 

approach,  although they may be useful within a branch and bound 

framework. 

Branch and bound methodology has come to the fore in ILP technology. 

Due to the inherent flexibility of this approach, problems with special 

structure can be solved efficiently by taking advantage of properties 

associated with the special structure.     Furthermore,  feasible solutions 

are often generated before optimality is proved so that if early termina- 

tion is necessary,  a good feasible solution will be available in most 

cases. 

In the remainder of this chapter some PILP analysis will be devel- 

oped using cutting plane methods.    However,  as would seem to be true in 

ILP,  the most effective use of cutting planes appears to be incorporating 

them in a branch and bound approach.    The bulk of the analysis conse- 

quently will be an outgrowth of ILP branch and bound methodology. 
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As a means for understanding the relationship between ILP and PILP 

solution techniques,  two rudimentary algorithms for solving a PILP will 

be given.    The first approach utilizes cutting planes while the second 

uses branch and bound.     These algorithms should provide a springboard 

for the more detailed analysis in Inter chapters. 

1.    Cutting Plane Approach 

Thv main idea behind cutting plane algorithms in  ILP is to "cut off" 

portionr.  of the linear programming feasible region while leaving the ILP 

feasible region   (i.e.,  the convex hull)   untouched.    The optimal linear 

programming solution    ^us approaches the optimal integer solution as the 

LP feasible region approaches that of the ILP feasible region.    Computa- 

tional experience has shown that the first few cuts are often very 

effective in removing large parts of the LP feasible region.    However, 

later cuts tend to become more and more degenerate,  and progress toward 

an optimal ILP solution deteriorates. 

This empirical property of cutting plane algorithms might be ex- 

ploited in PILP.     Assume we have a PILP with a finite number of objective 

functions: 

For k = 1,...,K solve: 

min   (c +  f )x 
x>0 

(R ) Ax >  b (Rk 

x.   integer,  j  e J 

where c, f , A, b are all integer valued. It is easy to see that the 

feasible regions of each (R) are the same. If cuts are made only on 

the constraint set,  then a cut which is valid for   (R ) ,  say,  is valid 
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for all other (R, ). Of course, a cut made on the objective function may 

not be valid for all (R. ). Therefore we assume in the following that 

such cuts are not allowed. 

Since cutting plane algorithms usually perform well during the first 

few iterations, a plausible approach for solving the PILP might be the 

following. We assume the feasible region is nonempty and bounded. 

Solve (R ) to LP optlmality. If the optimal solution is not integer 

feasible, then cuts are added to (R.) until they become "ineffective", 

and then retaining these cuts, (R ) is solved to LP optlmality. Cuts 

are then added to (R ) until they become ineffective, and (R ) is then 

solved to LP optlmality, etc. When cuts become ineffective for (R ) , 

return to (R ) and continue the process.  The hope is that cuts added 

to one problem will eliminate the long series of ineffective cuts for 

the other problems. 

A cutting plane algorithm for the PILP with a finite number of 

right hand sides can also be constructed.  Consider the problem: 

For k ■ 1,...,K solve: 

min ex 
x>0 

(Qk) Ax >. b + rk 

x. integer, j e J . 

In the general case some constraints are being tightened and others are 

being relaxed as k varies, so that the feasible regions are not neces- 

sarily of the form F(Q ) 3F(Q ) 3 ... pFCQv.)-  Up until now it was 

thought that cutting planes could not be used under such conditions, 

since a cut might be valid for one (Q ) but not for another. The fol- 

lowing new result allows one to generate a valid cut for all K problems. 

In the theorem we shall use the traditional LP notation of the 

10 
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simplex method.    Let B be a basis, x      be a basic variable under the 
o, 

1 

basis B,  NB be the Index set of nonbaslc variables,  and x      ■ y4  - 

-1 - ' I     ajaxj where y.  ■   (ö    b) ., and a., la the updated constraint coef- 
jeNB    1:, 3 1 13 

flclent for the LP tableau associated with the basis B.    We assume that 

(Q )  Is a pure integer program with c, r  , A, b having all Integer 

components for k -  l,...,K.    An analogous result holds  for the mixed 

integer case as well. 

Theorem 1.    Given any basic  (possibly primal  infeasible)   solution for 

tyj (Q ),  the traditional Goroory cut,    Z      (a 

th ^NB      lj 

(using the i      row of the tableau as the source row) ,  does not violate 

[a. .))x.   > y. 
ij       D  - 'i 

the convex hull of integer solutions for  (Q ) 

Proof;     Let x      be a basic variable and suppose y.   <  0.     Then x      ■ y. 
1 _ " i 

Z     a.^x.  =*   x„    +    I       (a. .]x.  < y.  since x.   > 0 V j  e NB  «•   x„    + 
jeNB     ^   j Bi        JCNB        ^     3-yi J   " Bi 

J)      [a.,]x.   <_ [y.J   since both sides of the inequality must be Integer. 
jeNB      ^-J    J i 

Then 

x„    +    Z      a. .x,  = y. 
i       JGNB      J  J 

(xn    +    Z       [a..]x.   <   [y,]) 
Bi       jeNB      ^     D -      i 

Z       (a..  -  (a..])x.   > y.   -   [y. ) 
j.NB      ^ ^      3 ~   i 

or letting f. .  « a. .   -   [a. .]  and f.  = y.   -   [y.J   , 
i]        i] ij i        i i 

we have z      f.Jx.   > f.   . i I 
jeNB    ^^ *    i 

Note that the assumption that y, < 0 did not affect the proof. 

In order to use this result effectively, we proceed as follows. 

Set up  the LP tableau for an initial basic feasible solution for (Q ) 

11 
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w 
under the basis B, 

(QJ 

where y    is the updated right hand side and z    is the associated objec- 
l*A 

tive function value.    Then in columns directly to the left of the 
fil 

column, add columns for initial  (possibly infeasible)  basic solutions 

for  (Q. )»  k ■ 2,...,K with respect to the initial basis B found for (Q ) 

ZK ...            Z2 Zl                         Cj 

K                      2 1- 
y. ...        y. y.                a. . 'i                   'i 'i ij 

(QK)     •••       (Q2)       (Q1) 

Now solve the LP for  (Q )  updating the tableau from iteration to 

iteration in the usual manner with the extra columns  for k • 2,... ,K 

being updated according to the same rules as  for k =  1.    Assume we have 

solved the LP to optimality for  (Q )  and the solution is not inteyer. 

Then we may add the cut  (choosing a source row i) :       Z      f. .x.  > f.   . 
k JeNB    ^^ "   x 

But by Theorem 1 we may add the cut    I *i-\x-\ — ^   (usin<3 t*16 same 

jeNB    13  J 1 

source row)   for  (Q. ) , k - 2,...,K.    Note tuat l      {i
xj.  is the saine for 

11 jcNB      3   3 
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•11 k, so that only one row must be added to the tableau. This row 

-1  .2 ,K. 
will be    E      ^jaxJ 1. (f,/f^f • • ff.).    The expanded tableau is: 

<v 

00 

(Q2) (Q, 

So *-hen for any '. isis B we may add a cut which is valid for each   (Q ). 

Unfortunately,  a cut guarantees only to cut off the  current solution, 

and not to cut off any feasible integer solutions.     So if the current 

basic solution is infeasihle for some  (Q ) ,  it is possible that none 

of the feasible LP region of   (Q )  will be cut off.     However,  if the 

current infeasible  solution is  "close" to the  feasible region,  it is 

more likely that some of the feasible LP region will be cur off. 

It follows that the cutting plane approach given  for the finite 

objective function PILP can be used also for this  finite right hand 

side PILP assuming that  for each  (Q )  the feasible  region is nonempty 

and bounded.    By making simple changes to allow for unbounded or empty 

feasible regions,  this assumption may be dropped. 

13 
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2. Branch and Bound Approach 

We now turn our attention to the method of branch and bound. Due 

to the Inherent flexibility of the approach, it is no suxpriae that the 

general XLP branch and bound approach may be extended in a straight- 

forward manner to the PILP. We shall give a rudimentary ILP algorithm 

and then show now it can be generalized to the PILP. 

ConPider the ILP: 

(P) 

nun ex 

Ax > b 

x integer, j e J 

Let v{')  be the optimal value of (•). A rudimentary branch and bound 

approach for (P) is (Geoffrion and Karsten [19721) : 

1. Initialize the candidate list to consist of (P) and set z* to n. 

2. Stop if the candidate list is empty: if z* is finite, then the 

solution x* associated with z* is optimal in (P) ; otherwise (P) 

has no feasible solution. 

3. Select one of the candidate problems to become the current 

candidate problem (CP). 

4. Solve a relaxation of (CP) , namely (f-'O • 

5. If F(CP_) = fS or  v(CP ) >z*,  then go to 2. 
R K 

6. If the optimal solution to (CP ) is integer feasible, set z* = 

v(CP_), set x* to the optimal solution of (CP ) , and go to 2. 
R R 

7. Separate (CP) into two simpler problems such that the union of 

their feasible regions is the feasible region of (CP) . Add these 

two problems to the candidate list and go to 3. 

14 
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W& now consider the PILP. 

For k > 1,.,.,K solve: 

(p
k' 

min  (c +  f. )x 

(A + D, )x > b + r, 
k      — k 

x.   integer,  j   E J  . 

Candidate problems will be denoted by  (P        ) .    The subscript k refers 
k # R, 

i 

to the particular problem in the PILP, while R. refers to a particular 

restiiction placed on (P ) ap a result of separation. An example of such 

a restriction would b« to append the constraint x. = 1 to (P. ) .  Define 

Rn to  be the null restriction, so that (P, 0 ) " (P.) V k » 1,...,K. 

A rudimentary branch and bound approach for the PILP is: 

1.  Initialize the candidate list to consist of (P   ) , (P, _ ),..., 
i.,R0 ^R0 

(P.. _ ) end set z* to «>  for k = 1, 
K,R K 

2. Stop if the ceindidate list is empty:  for each k = 1,...,K, if z* 
it 

is finite, then x* is optimal in  (P, ) ; otherwise   (P, )  has no 
k k k 

feasible solution. 

3. Select some subset,  S,   of the candidate list such that each member 

of S has the same R. .     For s  e S denote the corresponding  candidate 

problem by (CP        )   . 
K r R.    S 

4. For each s e S, solve a relaxation, say, (CP, „ ) , of (CP,   ) . 
k^  s k^ s 

5. For each s e S,  if either F(CP,        )     = (? or v((CP1        )   )   >  z*,  then 
k,R. s k,R. s — k 

delete £. from S.  It S is empty, go to 2. 

6. For each s e S, if an optimal solution to (CP   )  is integer 
K, R.    S 

feasible,  set z* = v( (CP,        )   )   and x* to the optimal solution of 
k k,R.   s k 

_ i 

(CP   )  and delete s from S.  If S is empty, go to 2. 
K ^ K.    S 

7. For each s e S,  separate   (CP )     into two simpler problems such 
K f R.    S 

15 
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that the union of the feasible regions is the feasible region of 

(CP, „ ) . Update R. to reflect this added restriction, and 
k,R s   r i 

go to 3. 

Through the choice of the subset S of candidate problems in step 

3, flexibility is permitted in determining the order (if any)   in which 

the individual (P.j's are to be solved. By restricting the choice of 

S to those candidate problems with the same R , it may be possible to 

utilize parametric reoptimization techniques in step 4. This is the 

main reason for allowing more than one candidate problem at a time to 

be selected from the candidate list ir. step 3.  In steps 5 and 6 if 

fathoming occurs for some s e s, then s may be deleted from S since any 

further restrictions of (CP,   )  are not of interest.  In step 7 
k,R. s 

separation occurs for all remaining s e s. In order to capitalize 

fully on parametric reoptimization techniques in step 4, it may be 

advisable to invoke identical separations for all s e S. However this 

is not required. Basically, then, the choice of S in step 3 and the 

choice of relaxation in step 4 allows fathoming and separation machinery 

to be applied in such a way as to limit the number of relaxations to be 

solved and to have control over the creation of new candidate problems. 

Armed with these rudimentary approaches for PILP our next task is 

to identify and catalog salient characteristics and properties of 

special types of parameterizations which may be of use in formulating 

more sophisticated algorithms. This is the topic of the next chapter. 

16 
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II.     CHARACTERISTICS  AND PROPERTIES OF PARTICULAR PARAMETERIZATIONS 

Aside from characteristics of specific problem classes, a PILP 

possesses other characteristics and properties which may influence the 

solution strategies to be used in an efficient algorithm.    These 

attributes generally depend on the type of analysis which is being 

undertaken,  e.g., tradeoff, sensitivity, priority, etc.    A representative 

checklist of attributes is: 

• Are all the ILP problems which make up the PILP known in advmce? 

An example of where this may not be the case is in a priority 

analysis.    This analysib depends  in a sequential fashion on the 

optimal solutions to selected ILPs; generally it is impossible  to 

state explicitly in advance all of the ILPs which are to be solved. 

• How many ILP problems make up the PILP?    Are there  just a few, 

a dozen, a continuum, or is the number unknown? 

• How eure the individual ILP problems related to one another? 

Do they differ only in the objective function or only in the 

right hand side?    Does the constraint matrix change?    Are 

variables added or deleted?    Are constraints added or deleted? 

Is  there a continuous parameter of change?    Are the feasible 

regions or the objective  functions changing monotoneiy? 

• What optimality tolerance is required?    Is e-optimality or 

"beating some threshold" tho criterion?    Is the threshold value 

known in advc*."«» for each problem or does it depend on  inter- 

mediate solution results? 

Associated with some of these attributes are properties which may 

be used to advantage in algorithmic design.    Some of these properties 

17 
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I allow the transformation of a given PILP into a hopefully simpler PILP. 

Otherr deal with the behavior of the optimal solution and value for 

special types of parameterizations. 

A. Transformation of a Continuous Pure PILP to a Finite PTLP 

(Te) 

Consider the pure integer PILP: 

For V 9 E   [0,1]   solve: 

min ex 

Ax ^ b +  Sr 

x integer 

where x is an n-vector and b is an m-vector.    We assume that each 

component of c, b,  r,  and each entry of A is integer valued.     The ele- 

mentary result which follows   (cf.  Noltemeier  [1970])   shows that it is 

possible to transform the continuum of problems over V 6 e   [0,11   into 

an equivedent PILP with a finite number of right hand sides. 

Theorem 2.    The PILP,   (T )  V 9  e   [0,1], may be transformed into an ————— Q 

equivalent PILP of the form: 

For k ■ 1,...,K solve: 

min ex 

Ax > b + t. (Tk) 

x integer 

where t, is an integer valued vector conformable with b for k = 1,...,K. 

Proof: Since all entries are integer and x is required to be integer, 

then for a given 6 e [0,1] the vector b + or may be replaced by the 

vector <b + er> (where <•> denotes the smallest integer greater than or 

18 
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•qual  to  *,   component by component).     It  follows that It is sufficient 

i 

to solve the PILP for those  6 e   [0,11  such that Gr    is integer  (r    ? 0) 

for some i   c   {!,.,.,m).    But only a finite number of values of 6  e   [0,1] 

satisfy this property, since each component of r is finite.    Hence the 

PILP may be transformed to the problem in the theorem statement. j 

The actual transformation may be done  in the following way.     For 

each component r.  ^ 0 of r write down the values of 6 c   [0,1]   for 

i      2 Iv1! which    r,   is  an integer.    These values are 0, T—r, T r,   ...»     i     n   1. 

Place  these values in a set R. .    Then H =    U    R.   is the set of values 
i-1    1 

of  6  for which some  6r.  is an integer.    Let K be the cardinality of H, 

and let  6    be  an element of H.    Then an equivalent PILP  is: 

For k ■ 1,...,K solve: 

min ex 

Ax > b + 9, r — k 
x integer . 

Letting t.   ■  6  r we have the result stated in the theorem. 

B.    Theoretical Properties for Right Hand Side and Constraint Matrix 

Parameterizations 

Consider the PILP: 

For k ■= 1,...,K solve: 

min ex 

(V (A + D, ) x > b + r, k      — k 

x    integer,  j e J . 

Note that this parameterization allows simultaneous changes in the 

constraint matrix and the right hand side.  Let F(S ) be the respective 

feasible regions, v(S ) be the optimal solution values, and x* be an 

optimal solution for (S ) . 
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D«finitioni    A PILP is said to bs monoton« if F(S1) 2 F<S2)  - '•• _?F(S
K) 

Theorem 3.    Let the PILP be monotone.    If x* is optimal for (S )  and 

x* e F(sk+1)»  then x* is optimal for  (S.   ,)   also. 

Proofi     Since F(Sk+1) 5F(Sk),  v(Sk+1)   >. v(Sk).    Now x*  c F(£k+1)   «o 

v(Sk+1)  - v(Sk)  and x* is optimal for (Sk+1). || 

It is clear that if a PILP   (or even some subset of the PILP)   is 

monotone,  and the individual problems are solved in the order of 

decreasing feasible regions, then some   (S  )  may not have to be solved. 

This occurs if xj*  e F(Sk+1). 

We mention in passing that a well-known PLP result for a contin- 

uous parameterization of the right hand side does not hold for PILP. 

Consider the PLP: 

For V 6  e   [0,1]   solve: 

(He) 

mm ex 
XCX 

Ax > b + 9r 

where X is a polyhedral containing upper and lower bounds on all 

variables,  this assuring a bounded feasible region.    It is well-known 

that the optimal solution value v(i" )   is piecewise linear,  continuous, 

and convex.     Unfortunately,  this does not hold for the corresponding 

PILP.     However, we do have the  following simple result. 

Consider the PILP: 

For V 9   E   [0,1]   solve: 

(He) 

mm ex 
XCX 

Ax > b + Or 

x.  integer,   j  e J 

20 
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Let the PILP be monotone. That is, if 0 ^ 0 < e < 1, then 

F(HÖ ) 2 F(He )•  Also assume that F(H ) ^ (2». 
1 "    2 1 

Theorem 4.  The optimal solution value v(Ha) i3 nondecreasing (and 

hence quasiconvex) on [0,1]. 

Proof:  Immediate.     I I 

I 

Note that v{HQ) will be piecewise linear and convex over segments ö 

of   [0,1],  but that»  in general,  discontinuities will occur at isolated 

point», on   [0,1] . 

C.    Theoretical Properties for Objective Function Parameterizations 

When compared with the paucity of  results  for right hand side 

parameterizations,  the quantity of results for objective function 

parameterizations may come as sane surprise.    This is due to the con- 

stancy of the  feasible region as a function of the parameterization. 

All of the results in this section deal with the behavior of the opti- 

mal solution and value as a function of the parameterization. 

Consider the PILP: 

For V 9  e   [0,1]   solve: 

min   (c + ef)x 
xeX 

(v Ax  > b 

x.  integer,  j  e J 

where X is a compact polytope. The following result (Manne [1967] and 

Noltemeier [1970]) is a direct extension of the result for the corres- 

ponding PLP problem. 
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Theorems.     For   (PJ  V 9 c  [0,1]  the optimal solution value v(P )   is 
- o ö 

piecewise  linear,  continuous,   and concave. 

Proof;     Let F ■   {x|x e X, Ax ^ b,  and x    integer,  j  e j).    Replace F by 

its convex hull,  Co(F).    It is well-known that this can be accomplished 

by adding a finite number of linear constraints to the problem.     The 

convex hull has the property that each of it-i extreme points corre- 

sponds to a feasible solution of F.    But,   for V  6 c  [0,1]: 

min (c +  9f)x    is just a PLP.    Then  since the optimal  solution 
xcCo(F) 
value of a PLP over 6 is piecewise linear,  continuous,  and concave,  it 

must also be such for the PILP. | | 

This result, when coupled with the next theorem,  reduces the 

continuum of problems  (Pe)  V 9  e  [0,1]   to a finite number of problems 

for which optimal solutions must be found. 

Theorem 6.     For   (PJ  a finite set of solutions  can be constructed,  each _—_____ y 

member of which is optimal over some 6-range   [a,b], where 0 <^ a < b <^ 1. 

The union of these ranges is   [0,1).   (There may exist solutions which are 

optimal only at a single value of 6, but in this case there must always 

be an alternative optimum which remains optimal over a nondegenerate 

interval including this value.) 

Proof;     Follows  from Theorem 5 and from the fact that there are a finite 

number of break-points for v(P )  V 9 e   [0,1].     See figure below. | | 
9 

Note that in the fiaure each straight line corresponds to a feasi- 

ble solution for (P.). The heavy line denotes v{Pe). 
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v(Pe) 

e 

The next  lemma states a well-known monotonicity property of the two 

portions of the objective function of   (PQ) ,  namely ex and fx.     This 

property will enable us to make a statement  (Theorem 7) concerning the 

behavior of certain variables in an optimal solution of (PJ   as 6 is 

varied.    Let x*{9)  he an optimal solution for   (P-) . 

Lemma 1.     If 0 £ 0.   < 6  ,  then cx*(e  )   <_ cx*(e2)   and fxMe.)   >_ fx*(e2) . 

Proof;    Without  loss of generality,  take  0=0 and 0    ■ 1 since c and f 

are arbitrary.     Clearly cx*(0 )  _< cx*(0  )   and   (c + 0  f)x*(0 )   <_ 

(c + 02f)x*(01) _< cx*(02) + 02fx*(01).    Therefore fx*(02)   <_fx*(01).   || 

Our next result utilizes Theorem  5 and Lenma 1 in order to show 

that it is possible to reduce the number of variables in  (P )   for cer- 
9 

tain values of 0.    This is done by fixing   (pegging)  variables to 

specific values. 

Suppose   (P  )   and  (P )  have been solved to optimality,  and a piece- 

wise linear,  concave upper bound function Ub(0)   has been found. 

Note that UB(0)   ■ V<PJ ' m^  " v(P ),  and that UB(0)  will have at 

least two  "pieces",  one due to x*(0)   and othe other due to x*(l), 

assuming cx*(0)   3^ cx*(l).    There may be more than two "pieces"  due to 
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feasible (but not optimal) solutions actually found in the process of 

solving (P0) and (P^ . See figure below. 

((*-f)x*(0) 

v(Pe) 
cx*(l) 

v(P1)-(c+f)x*(l) 

v(P0)-cx*(0) 

feasible but not 
optimal solution 
for (P0) 

Further, suppose that x. is a 0-1 integer variable and let a = 0 or 1, 
o 

Theorem 7. if  x*(0) ■ a, g is any underestimate of v(P |x. = 1 - a) 
1 01   1 

such that VvP0)   < g»   and h is einy underestimate of v(P  |x. « 1 - a), 

. hen x    jtiay be pegged to the value a for those values of 6 for which 
,'o  , 

q +   (h  - q)e   >   UBO) . 

Pioc f.    The linear function g +  (h - g) 9  is a lower bound on 

v(P  |x.  = 1 - a)  by concavity. jj 
o 

The figure below may help in understanding this result.    In this case 

x. may be pegged to the value a for V e e   [0,9,]   U [9   ,1].    We note 

that g and h may be  found by utilitzing  "penalties" which are calcu- 

lated during the solution process for  (P  )   and   (P  ) . 

v(P0)-UB(0) 

v(P1)-UB(l) 
g+(h-g)9 
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Of course it follovs that If an underestimate s of v(P*|x. - 1 - a)  for 

some e c   (0,1)   is known which is greater than the value g -f  (h - g)e# 

then the piecewise linear, convex function connecting the points   (g,0), 

(s,e), and  (h,l)  may be used as em improved underestimate for 

v(P |x. - 1 - a) with attendant improvements in pegging x. to the value 

a over segments of   [0,1]. 

The next result gives conditions under which an optimal solution 

of  (PA)  may be deduced to be optimal over some segment of  [0,1].    This 
6 

result also enables the analyst to choose judiciously the next value 

of 6 at which to solve   (PÄ). 
e 

Let UB(e)  be a piecewise linear,  concave upper bound function of 

v(P ) where UB(0)  - v(pn)   a"«3 UB(1)  ■ vCP.).     Let the straight lines 

AC and BC make up the function UB(e)   (see figure below) . 

Theorem 8. a)     If v(P    )   ■ v  ,  then the lines AC and BC coincide with 
  ec       c 
v(PQ)  V 6 e [0,1].    b)   If v(P    ) - v .  then the line AB coincides with 

9 0c D 

v(Pe)  V 6  e   [0,1] 

Proof;    a)    The lints AC and BC are upper bounds  for v(P0).    Since 

UB(0)  - v(P0),   UB(1)   » vCP^^),  and UB(ec)   = v(P     ),   and since v(Pe)  is 

piecewise linear,  and concave, it is clear that AC and BC coincide 

with v{P0)  V 6 e   [0,1].     b)  Similarly,  since UB(0)   = v(PJ, UB(1)  = v(P,), o 0 1 

and UB(e   )  ■ v(P    ),  line AB achieves the minimum tor a piecewise 
c ec 

linear,  and concave function,  and hence AB coincides with v(p ). ! I 
9 ' 
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v(P1)-UB(l)  4^. 

v(P )-ÜB(0) 

Basically, the theorem states that if v(p ) ^ v or v(P ) ■ v  then 
ec   C     ec   D' 

{PQ) is solved for V 0 e [0,1]. 

Remark:  a)  If v(P  ) = v  (see figure below) ,then AC coincides with eE   E 

the function v(p ) v 0 e [0,9 J. b) If v(P ) - v^,, then AB coincides 
o C öE    F 

with v(P ) v 9 e [0,1]. 

V(P-)-UB(1)  -y^rL --rrrr=: 

v(P0)«UB(oT 

Of course an analogous result holds for 0    e   (0   ,1). 
E C 

These results for deducing optimality over a range of 9 are very 

powerful, and may enable a substantial reduction to be made in 

computation time.  They allow the analyst to solve (P ) at selected 
9 

points only, and still be able to deduce optimality over the continuum 

[0,1].  It is clear that having solved (P ) and (P ) , a likely choice of 

the next value of 0 at which to solve (P.) is 0.  This is because if 
9 C 

V(P9 ) " VC 0r V(P9   )   * VD'  the entire Problem for V e G   [0,1]  is solved. 
C C 
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N«xt we consider the sensitivity of an optimal  ILP  solution to 

special changes in the cost coefficients.    This comes within the realm 

of PILP, since by our definition a PILP is a collection of closely 

related ILPs.     Consider the  ILPs: 

min ex min c'x 

(P) Ax ^ b (P') Ax > b 

x    - 0,1 V j  e J 

th 

x    -  0,1 V j  e J 

where c* =» c except in the k      component.    Let x be an optimal solution 

to  (P) .    Piper and Zoltners   [1973a!   state a weaker version of the 

following result. 

Thoorem  S.      For nome k e J,  suppose x.  ■ 1.    Then x is optimal in  (P*) 

if and only if c^ <_ ck + v(p|xk = 0)   - v(P). 

Proof;    Since x is feasible in  (P1), it is optimal in  {?')  if and only 

if c'x <_ viV),    But v(T?')  - min MP" |x   - 0) , v(P, |x    - 1)> where 

v(p,|x    ■ 0)  - v(p|x,   * 0)   and vCP'jx^ " 1)   = c'x.     So x is optimal in 

(P')   if and only if c'x £ vCPJx.   * 0)  where c'x = v(P)   " c
k 

+ cü-       i | 

Corollary.     For some k e J suppose x    ■ 0.     Then x  is optimal  in  (P1) 

if and only if c' ^ c    - v(p|x    = 1)  + v(P). 

Mote that in an application one may not know the value for 

v(p|x.   * 0)   in Theorem   9,    but through the use of "penalties" one may 

calculate an underestimate of this value which can be used in the 

Theorem.    We observe that the ranges for changing tht cost coefficients 

are valid only for one-at-a-time changes.     However,  by restricting this 

range,    simultaneous changes can be made in cost coefficients.    Let 
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(P') - (P|c^ < ck and c^ - c^), (P") - (p|c^ - ck and c' < c^), and 

(P"<) £ (P|C^ <_ ck and c^ < cA) 

Theorem 10. For some k,  I c J  suppose x - x = 1.  Then x is optimal 

in (P'") if c^ < ck and c' <_ c£. 

Proof; By Theorem 9, x remains optimal in (P1) and (P11). We will 

show that v{P" ' |xk = x - 1) _< min {v(P," |x - x • 0) # v^"* [x = 1, 

x - 0), v(P",|x = 0,x = 1)} . First, vlP'"^ 1) < 

v(P|x^ = x    « 1)   £v(p|x    = x    = 0)  = vCP^'lx    = x    «0).     Second, 

v^'" |x    ■ x    = 1)  Jl vCP" |x    = x    = 1)  1 v{P, |x^ = 1,  x    - 0)  = 

v(P" ' |x    =  1,  x    = 0) .    Third,  vCP*" |x    = x    =  1) <_ v{?' ' k   = x    =  1) 

< v(P" jxj^ = 0,  x£ =  1)  = v(P",|xk = 0, x£ = 1). || 

Defining  (Q'1')  =   (PJc*   >^ c    and c' >_ c )  we have: 
it    ~—       Iv X.    'm~'        Xf 

Corollary. For some k, £ e J, suppose x = x. =0.  Then x is optimal 

in (Q'") if c^ >_ ck and c^ > c^. 

Note the difference in allowable rcinges in Theorems 9 and 10. in 

Theorem 9, the cost coefficient of a variable may be increased by a 

certain amount or decreased by an arbitrary amount.  In Theorem 10, 

however, the cost coefficients may only be decreased arbitrarily. This 

is a direct result of the fact that v(p|x - 0) may vary, if say, c. 

is changed as is done in Theorem 10. Since v(p|x = 0) no longer 

remains constant, it cannot be used as part of the bound. Finally, we 

note that by combining Theorem 10 and its Corollary, we may simultaneously 

decrease cost coefficients c such that x = 1, and increase cost 

coefficients c such that x = 0. 
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This completes the chapter on characteristics and properties of 

particular paraneterlzations. The utilization of the results which 

have been given depends almost entirely on the type of parameterization 

in the PILP. The next chapter details techniques for improving 

algorithmic efficiency which depend on the specific problem class (e.g., 

capital budgeting, facility location, etc.) being solved. 
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III.     PROBLEM DEPENDENT TECHNIQUES  FOR IMPROVING ALGORITHMIC  EFFICIENCY 

Given a PILP made up of ILPs belonging to a special problem class, 

what methods are available which would improve algorithmic efficiency? 

Four major techniques are problem reduction,  feasibility recovery, 

.ng problem reoptimization,  and wide range bounding. 

Problem reduction refers to preliminary analysis performed on a 

problem which may result  in variables being fixed at certain values, or 

additional constraints or cuts being added which will tighten the 

initial  (and succeeding)   relaxations.    Set partitioning problems 

(Marsten  [1971]   and Garfinkel and Nemhauser   [1969])   are prime examples 

of instances where logical  reduction is used to reduce  the size of the 

problem.    Basically,  logical tests are used to conclude that certain 

variables must take on specific values  (pegging)   in an optimal solution, 

v and that certain constraints can be eliminated.    Hammer and Nguyen 

[1972]  have used logical tests to generate precedence relations  for 

general 0-1 IIJ>s.    Examples of such relations are x.   <_ x    or 

X.  + x>   £ 1.     However,  for many types of ILPs such analysis is not 

worth  the effort expended.     In other words,  the  ILP can be solved 

faster without preliminary analysis.    In PILP, on the other hand,  if 

a single preliminary analysis can be done  for many or  all of the 

individual problems  in the PILP with little or no modification,  then 

the analysis may become more attractive because the extra work can be 

amortized over the whole   set of ILPs in the PILP. 

Since upper bounds on the optimal solution value  are used for 

fathoming,  generating good upper bounds is of primary  importance in 

any branch and bound algorithm.     Feasibility recovery  techniques are 
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used to generate these upper bounds.    The technique involves taking an 

optimal or even just a feasible solution to one problem and modifying it 

in such a way that it  becomes feasible in another problem in the PILP. 

A simple example is the mixed integer linear program where the right 

hand side is varied.     Given the optimal solution for the original 

problem,  fix the values of the integer variables,  and then reoptimize 

the continuous variables using the new right hand side.     If the 

resulting solution is feasible,  than an upper bound on the revised 

problem has been found. 

Bounding problem reoptimization is another promising technique. 

Heoptimization in ILP algorithms,  which utilitze LP as the primary 

relaxation,  is often used to great advantage.    Generally,  an advanced 

basis is used from the preceding candidate problem as a starting basis 

for the current candidate problem.     Reoptimization then proceeds using 

the dual simplex method.    In PILP this approach would also be used, 

but there is yet another application.    By referring to the  rudimentary 

branch and bound algorithm in chapter I,  we see that it is possible 

to choose a subset S of candidate problems from the candidate list. 

If these candidate problems  are closely related,  then a reoptimization 

technique would probably be an efficient method for generating an 

optimal solution to the relaxation for each member of the set S.    Such 

a procedure could result in smaller storage requirements as well as 

reduced computation time. 

A fourth technique we dub wide range bounding.    Generally this 

technique is based on the formal Lagrangean dual,  and depends on  find- 

ing feasible dual solutions which serve as valid bounds on the optimal 

values of the primal problems  in the PILP.    Oftentimes,  dual feasible 
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solutions are inexpensive to calculate,  and at the same time may be 

surprisingly good approximations to the optimal value of the primal 

relaxation.     Thus,  these methods may be used in place of  (or in con- 

junction with)  the  reoptimization  techniques in the previous  paragraph. 

The tradeoff involved is that computation time  is reduced at  a cost of 

producing a weaker   (dual)   bound.    Examples of wide range bounding 

applied to the continuous objective function and the continuous right 

hand side parameterizätions are given below. 

Consider the problem: 

For V 9 e   [0,1]  solve: 

(V 

min       (c + Of)x 
xeX 

Ax > b 

x.   integer,   j e   j 

where X is a compact polytope. 

Suppose that a set of dual multipliers X ^ 0 for the Ax ^ b 

constraints have been generated for some 9 E  10,1].    We know  from 

duality theory that:    v(P')   >_ v(D')  = max    [inf  (c +  9f)x +  X (b - Ax) ] 
6' 6 X>_ 0   xeX 

>_ inf  (c + 9f)x + X(b - Ax).     Also it follows for any other set of 
xeX . . 

dual multipliers X  >_ 0 that:     v(P )  ^ v(W ) ■ max  {inf   (c +ef)x + 
9 

XEX 

X(b - Ax)   ;   inf  (c +9f)x + X(b  - Ax)}   .     Now since v(6;X)   = 
xeX 

inf   (c + 9f)x + X (b - Ax)  is a piecewise linear,  concave function of 
xeX 
6 (for fixed X), and since v(D ) is also a piecewise linear, concave 

6 

function of    9, we have the situation shown in the figure below. 
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v(.e) 
improvements In dual bound 

to cc 

:J 
due to concavity of v(Dfl) 

Since v(P.)  > v(D )  > v(llö)  and since v(DQ)   is piecewise linear and 
6    — 6    — 9 o 

concave, we may improve v(W )  by filling in the non-concave portions 
o 

of v(W ) as shown by the dotted lines in the figure. Of course this 
6 

analysis holds for any number of choices of X >_ 0 for use in the 

calculation of v(W ). In essence we are only applying the fact that 
9 

v(D ) must be concave. 
6 

Next we consider the problem: 

For V 9   c   [0,1]   solve: 

(He) 

mm    ex 
xex 

Ax > b + Sr 

x    integer,  j e J 

where X  is a compact polytope. 

Suppose that we generate two sets of dual multipliers X >_ 0 and 

X ^ 0 for  (H~).     Then v(H )   >_ v(G )   = JUX {X(b + 9r)   + inf   (c - XA)x   ; 
9' 6 e 

xeX 
X(b + 9r)  + inf  (c - XA)x}  .    Note the interesting property that the 

xeX 
"inf" problems do not depend on 0.    This suggests that the computa- 

tional burden of finding a dual bound for  (H )  V 6 e   [0,11  would be 
9 

very cheap.    Still another dual bound may be obtained from the LP 

tableau of  (H~)   (if LP is used as the primary relaxation).     Suppose 
9 

that we have an optimal tableau for  (H~) .     The primal solution values 
9 
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of the basic variables are represented in the tableau by B     (b +  Or) . 

Now for some other value of 6, this basis may be infeasible.    But if 

the dual simplex method is used to regain primal feasibility, we may 

generate a dual bound for all 6 at each dual simplex iteration, since 

dual feasibility is retained in the dual simplex algorithm. 
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IV.     SCHEDULING SOLUTION  PRIORITIES  FOR PILPS 

In solving the PILP an important decision which must be made is 

the establishment of solution priorities.    Specifically,  should equal 

effort be given to solving all of the problems in tne PILP at all times, 

or should some priority scheme be initiated whereby one problem or 

some subset of problems is solved to optimality,  and then another 

subset is solved?    The priority scheme to be devised should take into 

account the type of parameterization and its attendant characteristics 

and properties   (chapter II) , problem class dependent techniques   (chapter 

III) ,  as well as aspects identified in the first part of this chapter. 

An important factor which plays an intimate role in the formulation 

of PILP branch and bound algorithms is whether the solution of one prob- 

lem is likely to furnish information useful for solving other problems 

in the PILP.     Three aspects of this factor will be outlined in this 

chapter.    The first aspect is the tightness of the primary relaxation as 

a function of the problem set index.    The second is the behavior of in- 

dividual integer variables in an optimal solution as the problem set 

index varies.     The third is the question of whether a branch and bound 

tree for one problem in the PILP is a "good" branch and bound tree for 

another problem in the PILP. 

The gap between the optimal integer completion value and the opti- 

mal  relaxation value at a given node  in a branch  and bound tree is a 

measure of the tightness of a relaxation.    This gap, of course,   is de- 

pendent on the problem set index.    The behavior of the gap function is 

an important factor in deciding on the priority for solution of the ILPs 

making up the PII.r,  since it would seem likely that problems with smaller 
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gaps are easier to solve them those with large gaps.    This will become 

clearer later in the chapter when various solution priorities are out- 

lined.     In addition it may be the case that solving a "small gap'   prob- 

lem first may enable good feasible solutions for closely related prob- 

lems to be generated by feasibility recovery techniques. 

Behavior of individual integer variables in an optimal solution as 

the problem set index varies is also an  important consideration. 

Intuitively we ask the following questions:     a)     do the optimal solutions 

remain relatively stable as the problem set index varies?    b)     do 

"important" variables tend to remain "important" as the problem set 

index varies?    Both questions can be clarified by appealing to the 

notion of  "integer A's."    For a 0-1 integer variable, x., define 

A(j)  - v(p|x.  ■ 1)   - v(p|x.  ■ 0).     Intuitively A(j)  may be thought of 

as an indicator of the "importance" of x.   in an optimal solution of  (P) . 

If  |A(j) |   is small,  then the value of x.   does not have much effect on 

the solution value.    It follows that in a branch and bound process, 

important variables should be the variables on which branching is done 

initially.     Clearly,  then question b)   would seem to be vital,   for it is 

directly related to the third factor which we shall now examine. 

The question of "good" branch and bound trees for problems in a 

PILP can best be examined by considerinq the notion of "scratch tree" 

dynamics.     Given a PILP indexed by k,  and given a traditional ILP 

algorithm,  a scratch tree is defined to be the branch and bound tree 

resulting from applying the ILP algorithm to,   say,  the k      problem in 

the PILP  from scratch without the benefit of any prior information. 

Scratch tree dynamics is the study of how the scratch trees change as 

the problem set index, k,  varies.     If the scratch trees remain 
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reasonably stable as a function of the problem set  index, thin it is 

likely that the scratch tree for the k      problem will be a "good" ini- 

tial «r oatation for the other problems.    We observe that a scratch tn 

consists of two types of nodes — fathomed nodes and unfathomed nodes. 

If a node is unfathomed for one problem,   it is reasonable to presume 

that the corresponding node will be unfathomed for a closely related 

problem   (assuming that the same type of bounding relaxation is used). 

While this may not always be so,  it does afford a rationale for inspect- 

ing only the fathomed nodes of the original problem.    Furthermore,   since 

the fathomed nodes  form a partition of the  feasible solutions of the 

problem, no optimal solutions can be missed by using this set of nodes 

as an initial candidate list  (initial separation)   for another problem in 

the PILP.    Thus we may choose to use the set of fathomed nodes as an 

initial separation for another problem in the PILP.    This is the tack 

used by Roodman   [1972,1973]   in his study on ILP sensitivity. 

Armed with a better understanding of the  factors which are of 

major consequence  in  the  formulation of PILP branch and bound algorithms, 

we now consider the  scheduling of solution priorities  for individual 

problems in a PILP.     There are at least three  solution priorities  for a 

PILP branch and bound algorithm. 

The  first approach is purely serial.     One problem in the PILP is 

solved to optimality,  and then using the information gleaned from this 

problem the next problem is solved to optimality.     This procedure 

continues  until all problems have been solved.     Information which might 

be of use for future problems  includes:     choice of an initial  separation, 

choice of branching rules and their operating parameters, knowledge of 

a good upper bound,   relative emphasis placed on  fathoming and pegging 
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machinery» choice of quitting threshold, and avoidance of nodes which 

are likely to be unfathomable. 

A second approach is lexicographically serial. Let the problem 

set be indexed by k. The procedure begins as though (P ) is the 

only problem to be solved. Branching, pegging, and fathoming machinery 

aie devoted wholly to (P,) until at some node (CP.   ) is fathomed. 1 i, R. 

Then    at this node the relaxation for  (CP        )   is solved  (hopefully 
^ ,R, 

by reoptimizing the   (CP        )   relaxation at the node) .    If  (CP.      )   is 
1,K. ^,K. 

fathomed,  the  (CP-      )   relaxation is solved to optimality, etc.    If 
3, R. 

1 

(CP_       )   is not  fathomed, then branching continues  from that node with 
2 ,R, 

the branching, pegging, and fathoming machinery devoted wholly to  (P ) . 

When a  (CP )   is finally fathomed at a node,  the   (CP        )   relaxation 

is solved to optimality at that node.    The process continues in this 

manner and backtracking in the branch and bound tree occurs naturally 

with each unfathomed node being tagged with the  index of the problem 

to which the branching, pegging, and fathoming machinery will be 

initially devoted. 

A purely parallel approach is another possibility.    At each node 

the relaxations for  (CP    _ ), (CP        ),..., (CP )   are solved.    If 1, R. 2 , R. K, R. 

some problems are fathomed, they are dropped from further consideration 

at any descendant of the node.    When all problems which remain uuder 

consideration at a node are fathomed, backtracking from that node 

occurs. 

The parallel  approach,  then,  relies on the  assumption that solving 

a series of closely related problems at a given node can be accomplished 

relatively efficiently.    The purely serial approach on the other hand 
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relies on the assumption that information gained from solving one 

member of the PILP will be helpful in jolving another member of the 

PILP. The lexicographically serial method is one possible compromise 

between the two approaches. 

At this point we present an  analysis which under certain assump- 

tions establishes a bound on the savings in computation time which 

can be achieved by the serial and lexicographic serial methods, over, 

say, the traditional approach where each problem in the PILP is solved 

from scratch.  We assume that LP optimizations (or indeed any other 

optimizations) require the same amount of computation time at all nodes 

in the branch and bound tree.  While this is not generally the case, it 

does allow for a simpler analysis. The assumption may be dropped at 

the cost of complicating the conclusions somewhat. 

Consider an  arbitrary branch and bound tree with the set of 

fathomed nodes denoted by N. 

Remark.  If a branch and bound tree has |N| fathomed nodes, then there 

are |N|-1 unfathomed nodes in the tree. 

Proof;  By construction using the fact that 2 +2 +...+2' '  =2' -!• | | 

Thus we see that the number of fathomed nodes is approximately 50% of 

the total number of nodes investigated in a branch and bound procedure. 

If the serial method is used for a PILP which utilizes the set of 

fathomed nodes as an initial separation, then the maximum savings in 

the number of nodes investigated is 50% over an approach where each 

problem is solved from scratch.  This holds for the lexicographically 

serial method as well.  Thus there is an upper bound on the savings 
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which can b« realized using the serial or lexicographic serial 

approaches instead of the traditional approach. 
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V.  THE PAHAMETRIC 0-1 KNAPSACK PROBLEM 

In this chapter we consider the parametric 0-1 knapsack problem. 

Three specific parameterizations will be examined: 

1) For k ■ 1,...,K solve: 

max ex 
(Pk) x-0,1 

wx < B - t, 
—    k 

2) For k = 1,...,K solve: 

max  (c + f, )x 
(R ) X=0,1 
K wx £ B 

3) For v 9 e [0,1] solve: 

max     (c + ef)x 
(Q   ) X=0,1 

0 wx  <_ B 

where c,  f,  f  ,  w are  conformable n-vectors and B,  t    are scalars. 

Without loss of generality we  assume throughout this  chapter that 

c,  w > 0,  B > 0,   and 0 = t.   <  t_   <   ...   < t.    < B. 

The 0-1 knapsack  is a very simple model.    One  important  applica- 

tion is the capital budgeting problem with one budget  constraint. 

Problem formulations  1) ,  2) ,  and 3)   allow for flexibility in the budget, 

the cost coefficients,   and in the maximizing criteria  respectively. Per- 

haps a more important use of the 0-1 knapsack problem is as  a subprob- 

lem fir a larger model.    One simple example is a general capital budget- 

ing problem  (with m budget constraints).    By Lagrangeanizing all the 

budget constraints    but one    into the objective  function,  a 0-1 knap- 

sack problem results.     Under certain conditions this  relaxation of the 

original problem can be  shown to be at least as strong a relaxation as 

the traditional LP  relaxation. 
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The outline  for this chapter is as follows.    First,  an efficient 

algorithm for the 0-1 knapsack problem will be  stated.    Then algorithms 

for each type of parameterization will be outlined,  computational re- 

sults will be cited,  and conclusions will be drawn concerning the most 

effective methods  for solving each parametric  0-1 knapsack. 

A.    An Algorithm for the 0-1 Knapsack Problem 

Consider the problem: 

(P) 

max    ex 
x-0,1 

wx  < B   . 

By capitalizing on the simplicity of this problem, it is possible to 

achieve substantial savings in computation time over, say, a general 

0-1 ILP code.    There are two properties of  (P)  which may be exploited 

successfully.     First we assume that the variables have been ordered by 
ci       co c 

decreasing "bang-for-buck"  ratios so that — > — > ...   > —.    With w    — w    ■- — w 12 n 
this ordering the solution to the linear program  (F) (replacing x = 0,1 

by 0 £ x <^ 1)  becomes analytic.    That is,  variables with the largest 

bang-for-buck are placed in the knapsack at their upper bounds of 1 

until no more room remains in the knapsack.     At this point the variable 

which could not  fit is placed in ths knapsack  at a fractional level 

such that the knapsack is  filled.    It is clear that all variables, with 

the possible exception of one, have value 0 or 1 in an optimal solution 

to   (P).     It follows that by setting the fractional  variable to 0,   feas- 

ibility in  (P)   is achieved,  so that a lower bound on v(P)   is readily 

available.     It is  these two properties   (an analytic solution to  (P)   and 

r simple feasible solution generator) which are exploited in the algo- 

rithm below. 
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Korsh and Ingaragiola   (KI)   [1973]  have developed an  algorithm for 

0-1 knapsacks which has proved to be very effective in reducing compu- 

tation times.    Basically they employ an inexpensive LP test which,  if 

passed,  allows a variable to be pegged to 0 or 1 at the root   (initial) 

node of a branch and bound tree.     Computational results  show that up- 

wards of 80% of the variables may be pegged to 0 or 1.     The reason for 

such powerful pegging is that the gap between v(P)  and the  lower bound 
| 

found by the feasible solution generator is generally small.    Once the 
I 

pegging tests are completed,  the  "reduced" knapsack problem consisting 

of the unpegged variables  is solved by any available knapsack algorithm. 

Since computation time for the pegging test is linearly proportional to 

the number of variables,  and a branch and bound approach  is generally 

exponentially proportional,   such a    de/Ice would appear to be quite at- 

tractive.      This 13 indeed true,  since the KI approach reduced computa- 

tion times by a factor of 5  for 50 variable problems and Ly over a fac- 

tor of 30 for 1000 variable problems. 

Dembo  [1974]  has noted that the concept of Lagrangean relaxation 
I 

may be used in carrying out the KI pegging tests.    While  his test is 
- 

slightly weaker than the KI test, the confutation time required for the 
j 

pegging phase only is about ?/3 less than for the KI method. 

The branch and bound algorithm used by KI was the Greenberg and 

Hegerich (GH) [1970] algorithm which until recently was the most effi- 

cient knapsack algorithm  However, Horowitz and Sahni (HS) [1974] have 

developed a branch and bound algorithm which dominates the GH algorithm. 

We present a variant of the HS algorithm which has decreased computa- 

tion times (in the branch and bound phase) by approximately 1/3 over 

the original HS algorithm. 
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In order to make the presentation of the algorithm clear, we shall 

appeal to the general branch and bound framework given  in Geoffrion and 

Marsten   (1972J.    An explanation of the finer points of the algorithm 

will be deferred until later. 

Algorithm At 
c        c 1 2 1. Order the variables by decreasing bang-for-buck so that — >_ — 2L 

c wl  w2 
... > —.  Set 1, ■ I • 0. 

- w       10^ 
— _ 

2. Solve (P) getting an  optimal solution x and an  optimal dual multi- 

plier X associated with the budget constraint.  If x is feasible 

in (P), stop:  the solution is optimal.  Otherwise denote the 

index of the fractional variable by r. 

3. Find a lower bound z* for v(P) by setting x = 0 in the solution 

to (P). Let x* = x. 

4. Try to improve z* by certain heuristics. 

5. For y i » l,...,r-l, if v{P) - c. + Xw. <_ z*,   set I = I U {i} 

(x. is pegged to 1). 

6. For v i = r+l,...,n, if v(P) + c. - Xw. £ z*, set I = I U {i} 

(x. is pegged to 0). 

7. Solve the remaining knapsack problem: 

(R)        Max I      c.  +    I ex. 

I w.x. < B - j;  w. 

^Vo        1£ll 

by using the branch and  bound procedure in steps 8-18. 

8. Initialize the candidate list to consist of (R) and let the incum- 

bent value be z*. 

9. If the candidate list is empty, stop: x* is an optimal solution 
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CO (P) and z* is  the optimal value. 

10. Select a candidate problem (CP) from the candidate list by a LIFO 

rule. 

11. Solve (CP) getting an optimal solution x. 

12. If (CP) is infeasible, go to 9. 

13. If v(CP) <_ z*, go to 9. 

14. If an optimal solution of  (CP)   is feasible in  (CP) ,  go to 18. 

15. Choose that x.  which is the free variable with the largest bang- 

for-buck. 

16. If w.   < B -    Z      w, , then add only  (CPlx, ■ 0)   to the candi- 
1 —   .    i    , 1 J     i:x. set to 1 

date list, add the restriction x. = 1 to (CP), and go to 15. 

I 
Otherwise go to 17 

17. If w,   > B -    E      Wj^ ,  add the  restriction x.  *  0 to   (CP) , 
3 i:xi set to 1 3 

choose that x    which is the free variable with the largest bang- 

for-buck,  and return to the beginning of this step.    Otherwise go 

to 11. 

18. A feasible solution to (P) has been found.  Set z* » v(CP), x* = x, 

and go to 9. 

In step 2 an optimal dual multiplier X for (P) can be shown to be 
c 

equal to —. In step 4 two heuristics are used in an attempt to im- 
r 

prove the value of z*.  First, set x = x and x =0. The solution x 

then has a slack in the constraint with value s = x -w . Now, for r    r 

i = r+l,...,n the following is done:     if w, ^ s,  set x,  = 1 and s - 

s  - w. .     If s > 0,  repeat this step for i = i + l.     Ifcx>z*,  set 

z* ■ ex and x* = x.     Basically,  this  heuristic puts extra variables  in 

the knapsack until no more variables  fit.    The second heuristic begins 
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toy setting x - x and x    ■ 1.    This overfills the kuapscck by s - 

(1-x ) «w  .    Then for i »  r-l>r-2,... ,1 the  following is dor.e:     set 

x.  - 0, s ■ s - w. ,  and if s  > 0 repeat this step for i ■ i  - 1.    When 

s £ 0, set s - -s and return to the test loop in the  first heuristic. 

Thus this heuristic begins by overfilling the knapsack,  and then vari- 

ables are withdrawn until  feasibility is obtained.    At this point the 

test loop in the first heuristic is employed.    The pegging tests in 

steps 5 and 6 utilize the notion of Lagrangean relaxation  (LGR) .    Con- 

sider the relaxation: 

(MR^ max    ex + A{B - wx)   . 
x-0,1 

It is easily seen (Geoffrion [1973]) that V(LGRT-) = v(P) where X ii an 

optimal dual multiplier for (P), and that the solution to (LGR—) is 

analytic. That is, 

1 if c. - Xw. > 0 
Xi " i '0 if c. - Xw. < 0 

i    i — 

Thus we have V(LGRT-|X.  » 1)  ■ v(P)  + c.   - Xw.   if x.   = 0, and 
Al 111 

v{LGR-|x.   - 0)   » v(P)   - c.   + Xw.   if x.  - 1.     Since v(LGR,)   < v(P) v X'   i ill X    — 

X >^ 0, it follows that the pegging tests are valid.  Steps 5 and 6 may 

be enhanced by adding the following tests if the LGR test fails: 

5b.  If v(p|x. - 0)   <_ z*, then set 1=1  U {i}. 

6b.  If v(p|x. = 1) <. z*, then set I = I  U {i}. 

The branch and bound algorithm of steps 8-18 is straightforward, 

but a few comments may make it clearer.  In step 10 a LIFO selection 

rule is used, thus guaranteeing linear storage and minimal setup costs 

in a computer implementation.  Step 14 is an addition to the HS imple- 

mentation which recognizes that if a relaxation has an optimal integer 
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feasible solution, then the current candidate problem may be fathomed. 

The branching strategy in steps 15-17 is done as follows. The most 

attractive free variable (in terms of largest bang-for-buck) is chosen 

as the branch variable. However, since this variable has value 1 in 

(CP) , we have v(cp|x. « 1) ■ v(CP) . Thus, no reoptimization is re- 

quired, and the next branch variable may be chosen. This continues 

until the next variable chosen, x., cannot fit in the knapsack at a 

level of 1.  But this implies that x. may be pegged to 0 due to feasi- 

bility considerations. Pegging variables to 0 continues until no 

longer possible. At this point control is returned to step 11, and the 

relaxation of the current candidate problem is solved.  In actuality, a 

group of variables (contiguous by index) are committed to 1 until this 

is no longer possible, and then a group of variables (contiguous by 

index) are pegged to 0 until this is no longer possible. This allows 

the LP in step 11 to be bypassed after most branching operations, which 

in turn reduces computation time measurably. This is seen in Table A 

where the HS algorithm (as coded by HS) is compared to steps 8-18 of 

Algorithm A.  Note that steps 1-7 were omitted in these runs.  Both 

algorithms were coded in FORTRAN H and run on an IBM 360/91.  Random c. 
x 

i 

and w.  were generated from a uniform distribution,  U [10,100] ,  and B was 
n 

set to   .5'{  I    w.).     Results show that  steps 8-18 of Algorithm A   ro- 
i=l    1 

duced computation time by 33% when comparcid with the HS algorithm. 

Results for all of Algorithm A (steps 1-18) are given in Table B. 

These results clearly dominate KI's results, even when machine differ- 

ences are taken into account.    Table C shows this dominance.    The trend, 

as the number of variables increases,  definitely is in favor of Algo- 

rithm A. 
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Quadrupling the number of variables increases computation time by 

a factor of 1.7, while for KI this factor is 4.2.    Finally, we mention 

that inclusion of steps 5b and 6b in Algorithm A was ineffective,  and 

in fact increased computation times slightly. 

B.     The 0-1 Knapsack Problem with a Finite Number of Right Hand aides 

In this section we consider problem 1).    It is well known that 

optimal solutions for all right hand sides from 1,2,...,B are available 

as a by-product if  (P)   is solved via dynamic programming  (DP) .    However, 

with the rocnnt developments in knapsack branch and bound technology as 

expounded upon in section A, we shall see that for problems with a rea- 

sonable number of right hand sides,   the branch and bound approach is 

more efficient bot'i in computation time and in storage requirements. 

Prom a practical point of view we note that if the various right 

hand sides to be considered in 1)   cover a large range,  then within that 

range it is possible to find optimal integer solutions for certain 

budgets by simply filling the knapsack using the bang-for-buck ordering. 

These budgets correspond precisely to thoje right hand sides within the 

reuige which have a naturally integer solution,  so that v(P)   = v(P) . 

Occasionally this might be all that is needed,  and of course such an 

analysis may be done by hand calculation. 

As an initial step in developing an algorithm for 1) ,  we investi- 

gate the problem dependent techniques of chapter III.    Then  factors 

affecting the scheduling of solution priorities of chapter IV will be 

considered,  three algorithms will be given,  and conclusions will  be 

drawn concerning the most efficient algorithm. 

Reduction techniques can be an effective means  for reducing 
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computation time.    The KI reduction used in Algorithm A is a classic 

example.    While this test applies only for a given right hand side, the 

number of computations required is minimal — 1 multiplication,  1 addi- 

tion, 1 subtraction, and 1 comparison per variable.    Hence, even when 

repeated for a number of right hand sides,   the computational effort is 

small.    Another reduction techniqu«  (which is independent of the right 

hand side)   is based on the following elementary result: 

Theorem 11.     If c,   > c,  and w,   < w.  then the constraint x,   > x.  may be 
  i -   j i -   j i -   j      ' 

added to 1)  without affecting the optimal  solution values for   (P  ) v 

Proof;    Assume x.  ■ 1 and x* > 0 in an optimal solution for   (P ) .    Then 
J 1 K 

let x » x* except x,  » 0 and x.  ■ 1.    Since w.   < w., this revised solu- 
j i i -   j 

tion remains  feasible, and since c.   > c..   It has an objective value at 

least as great as v{P ).    Since this is valid for each  (P )   individual- 
k Jc 

ly,  it must hold for  (P. ) v   k = 1,...,K.     || 
k 

This means thai: if x.   is pegged or set to 0,  then x, may be pegged 

1 
to 0 also.     Similarly if x.  is pegged or set to 1,  then x.  may be 

pegged to 1. 

Feasibility recovery techniques allow one to recover a feasible 

sc'utior. for   (P ) ,  say, given an optimal   (or even just feasible)   solu- 

tion for   (P  ) .    Suppose that a feasible solution x has been found for 

(P1)  where B-t1^wx>B-t.    One approach is to find {j|x.  = 1 
c, c. 3 

and -*• =•    min      —/.    Then set x,  = 0.     Ifwx<B-t„,xisa feasible w.        . ,   w, i — 2 j       irx^-l    i J 

solution for (P ) . If not, repeat the process. This approach simply 

removes the variable which has the worst bang-for-buck from the knap- 

sack.    Of course,  a multitude of other feasibility recovery techniques 
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can be derived us well. 

Next we examine bounding problem reoptinizatlon techniques.    Due 

to the analytic nature of the LP solution for (P. ) , it is clear that 

reoptimization may be handled very easily.    All that is required is to 

keep track of the level of the fractional variable, and then to reduce 

its value until it reaches a level of 0, or until the budget constraint 

is satisfied, whichever comes first.    If the budget constraint is not 

satisfied,  the next  (contiguous by index)   variable equal to 1 in the 

original LP is reduced in the same manner. 

Finally, wide remge bounding methods may be employed.     However, 

due to the efficient If reoptimization available,  such bounding tech- 

niques would not seem to be attractive for this class of problems. 

We now consider factors affectinq the scheduling of solution 

priorities.    The tightness of the primary relaxation is generally a 

function of x  , which is itself a function of the varying right hand 

side.     It is easy to see that c  »x    is an upper bound on v(P )   - v(P) , 

and that this upper bound varies from c    - e to 0  (for e >  0)   for suit- 

able values of the right hand side.     So the gap value  fluctuates up and 
i 

down   (since r varies) with respect to the right hand side, making it 

difficult to capitalize on the behavior of the gap. 

The behavior of the individual  integer variables in an optimal 

integer solution seems to be  rather stable  for the vast majority of 

variables.    This can be seen by the  consistent pegging of variables to 

0 or 1 as the right hand side varies.    In general,  computational experi- 

ence has shown that variables with large bang-for-bucks tend to be 

pegged to 1,  and those with small bang-for-bucks tend to be pegged to 0. 
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Variables with "average" bang-for-bucks tend to vacillate between 0 and 

1 in optimal solvMone as the right hand side is varied. 

The persistence of pegged variables   (for varying right hand sides) 

would tend to support the contention that scratch trees are rather 

stable as the  right hand side varies.     Furthermore if the branch vari- 

able is always  chosen to be the free variable with the largest bang- 

for-buck   (as in Algorithm A] , then since the bang-for-buck ordering 

remains the  same,  the selection of branch variables should remain sta- 

ble.    This line of reasoning, of course, simply reinforces the conten- 

tion that scratch trees remain stable. 

Three different solution approaches  for 1)  were tested,  all of 

which used Algorithm A as a primary building block.    First,  a serial 

approach utilizing an advanced initial separation was attempted. 

Algorithm B; 

1.    Set k ■ 1.     Solve   (P )  by Algorithm A getting an optimal solution 

2. If wx*  < B - t,   ,, x* is optimal for  (P,    ,)   so let k = k + 1 and — k+1 k+1 

return to the beginning of this  step. 

3. Set k = k + l.     Ifk>K, stop. 

4. rae a feasibility recovery technique to  find a good feasible solu- 

tion for   (P.).     Call it x* and the corresponding objective value. 

5. Perform steps  2-7 of Algorithm A for   (P. ) • 

6. Using the   frontier of fathomed nodes   (from  (P      )  where pegged 

variables  from steps 2-7 of Algorithm A are eliminated)  as an 

initial  separation  (or candidate  list) ,  perform steps 9-18 of 

Algorithm A.     Go to 2. 
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Th« teat in step 2 is an application of Theorem 3. step 5 employs 

the pegging teats of Algorithm A. In step 6 the initial candidate list 

used may be described as follows  (see figure below). 

scratch tree for  (P.) "reduced" scratch tree 

Initial Candidate List for (P2) 

(PJXj^ ■ x3 • Xg » 1, x6 - x7 ■ 0) 

(P|x1 = x3 - 1, x6 - x7 - x8 = 0) 

(P|X   = x    = x    « 1, x    = 0) 

(pjxj^ = x3 *  Xg -   1) 

(P|x1 = 1, x3 - 0) 

(P|x1 = 0) 

In this  figure a vertical line denotes a variable pegged to 0 or 1 ,   and 

a horizontal lints denotes the automatically fathomed alternate branch. 

The candidate list may be ordered in step 6 by the most promising relax- 

ation value,  in other words, when a candidate problem is fathomed in 
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(P ),   say,   it is stored along with its relaxation value, say v(CP ) . 

Then for   (?)   these candidate problems are investigated in decreasing 

ordor of relaxation value. 

The  reduced scratch tree is  found by simply eliminating the top of 

the scratch tree which consists of pegged variables resulting from the 

pegging tests of steps 2-7 of Algorithm A.     This  is done since  in gen- 

eral these pegged variables comprise upwards of 80% of the total number 

of variables  in the problem,  and as a result the  frontier of fathomed 

nodes becomes rather large.    By using the  reduced scratch tree,   the 

frontier is reduced significantly.    Clearly the  reduced frontier is  a 

valid initial separation for  (P ) .    The reasoning for this approach is 

twofold.      First,  in removing the pegged variables  from the scratch 

tree for   (P )   it is assumed that having pegged a variable in  (P  ) , that 

same variable may be pegged ff x   (P_).    Second,  in using the reduced 

frontier it is assumed that Ü e onfathomed nodes in the reduced tree 

for   (P  )  will  remain unfathoned for   (P  ).     We  should also note that 

occasionally "automatic" fathoming occurs for problems in the initial 

candidate  list.     For instance,  consider the candidate problem 

(P|X    = x    = x    =  1,  x, = x,_ = 0).    Now if x    is pegged to 0 m   (P ) , 13 8 6 7 8 2 

then this   (CP)   is fathorr.ed by infeasibility.     It  is  also clear that  a 

candidate problem may be  fathcaned if    Z      w^ > B - t . 
i: Xj^  set  to  1 

A second solution priority is the lexicographically serial method. 

Algorithm C: 

1. Perform steps 2-7 of Algorithm A for   (P. ) »  k =  1,...,K getting 

(x*)     and z*. 

2. If ein optimal solution has been found for a   (P  )   remove that index 

k from further consideration. 
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3. Initialize the candidate list to consist of  CO»  k ■ 1#...,K 

where   (R)   is the reduced knapsack in step 7 of Algorithm A for 

(P ) .    Individual incumbont valuos are denoted by z*. 

4. Set k - 1. 

5. Stop if the candidate list '.s empty:  (x*). is an optimal solution 

and z* is the optimal value for k ■ 1,...,K. 

6. If k > K, set k ■ 1. Select a candidate problem (CP ) by a LIFO 

rule. That is, choose the last candidate problem in the list 

which has a "k" subscript. 

7. Solve (CP. ) getting an optimal solution x. 

8. If (CP. ) is infeasible, set k = k + 1 and go to 5. 

9. If v((CP )) , set k = k + 1 and go to 5, 

10. If an optimal solution of (CP.) is feasible in (CP.) , go to 14. 

11. Choose that x which is the free variable in (CP ) with the larg- 
j K 

est bang-for-buck. 

12. If w. < B - t, - I     w. 
i-.x^  set to 1 in (CP^) 

, then add (CP, x. = 0) , 
h D 

h = k, ,K to the candidate list, add the restriction x. = 1 to 

(CP.) , h = k,...,K, and go to 11. Otherwise go to 13. 

13.  If w. > B 
3 

w; 
iix^ set to 1 in (CP^) 

, add the restriction x.= 0 

to (CPJ , h = k,.. .,K, add (CP. Ix. = 1) , h = k+1,... ,K to the 
n n 3 

candidate list, choose that x. which is the free variable with 
3 

the largest bang-for-buck, and go to the beginning of this step. 

Otherwise go to 7. 

14. A feasible solution to (P. ) has been found.  Set z* = v(CP ) , 
K K       k 

(x*)  = x, k = k + 1, and go to 5. 

In step 2 the reduction method is applied to all K problems. Steps 
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3-14 are a modification of steps 8-18 of Algorithm A.     Basically,  the 

procedure is to concentrate on  (P.)   in fathoming tests  and branching 

criteria until fathoming occurs at a given node.     Then at that node 

fathoming tests and branching criteria are applied to   (P.).    This con- 

tinues until all K problems have been fathomed,  at which point back- 

tracking occurs,  and concentration of fathoming and branching at a node 

transfers back to that  (P.)  with the smallest index k which has not yet 

been fathomed at the new node under consideration.    Two advantages of 

such an approach are the avoidance of excessive storage of nodes, and 

economies in the  reoptimization from  (CP  )   to   (CP    ..).     Two disadvan- 

tages are that an optimal  solution for  (P )   is n^'   always known for use 

in feasibility recovery techniques,  and the mo?    , onicity test for opti- 

mality cannot be applied since there  is no pr —dained order for find- 

ing optimal solutions for  (P,)» k a 1,...,K. 

A third approach is a serial method where each problem is solved 

from scratch.    The only links between problems  are the monotonicity 

test and the  feasibility recovery technique.    This approach could be 

thought ct as the traditi' nal approach. 

Algorithm D; 

1. Set k »  1. 

2. Solve   (P  )   by Algorithm A, getting x*. 

3. If wx* £ B - t       ,   x* is optimal for   (Pk+1) :     set k = k + 1 and 

return to the beginning of this step. 

4. Set k=k+l.     Ifk>K, stop. 

5. Use a feasibility recovery technique on x* to get a feasible solu- 

tion for   (P  ).     Go to 2. 
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A fourth approach,  which was not tested computationally, is the 

parallel method.     An algorithm incorporating this method is very simi- 

lar to Algorithm c.    Steps 1-5 are identical.     That is, the pegging 

tests for all problems are done before the branch and bound procedure 

begins.    In the branch and bound procedure   (steps 6-14 of Algorithm C) 

at any given node in the tree,   (CP )   is solved for all problems which 

have not been fathomed at a predecessor node.    All fathoming tests are 

applied to each of these candidate problems.     A branch variable is then 

chosen based on one particular unfathomed candidate problem, and candi- 

date problems for each  unfathomed candidate problem are added to the 

candidate list.     Of course if all candidates  are  fathomed at a given 

node, branching does not occur.    This approach was not tested computa- 

tionally since  it is very similar to Algorithm C,  and since in general 
I 

more candidate problem relaxations would have  to be solved in this 

approach. 

Computational  results  for the first three approaches are given in 

Table D.     Ten different knapsacks of 50 variables each,  and ten differ- 

ent knapsacks of  100 variables each were tested.     Problem data was gen- 

erated randomly  as explained earlier.     For each knapsack,   5 right hand 

sides were selected by  reducing each succeeding right hand side by 1% 

for the  50 variable problems and  .5% for the  100 variable problems.     It 

is  readily  seen  that Algorithm D dominates Algorithms B and C by a con- 

vincing margin,   and that its behavior timewise  is very stable.     The 

other approaches, while occasionally approaching the  times of Algorithm 

D,  had a much larger variance in computation  time.     Reasons for   the 

superiority of Algorithm D are twofold.  First  is the effort expended in 

bookkeeping and setup  costs for Algorithms B and C.     In general these 
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costs outweighed the actual algorithmic calculations.     A second factor 

is that the implementation of the LP optimization in Algorithm D is 

very efficient whereas the LP optimization in Algorithms B and C re- 

quires more effort.     In Algorithm D the LP ortimization is performed 

only over variables with an index larger than some value.    Also by con- 

struction, these variablfts are all "free" variables.     That is, checking 

if a variable has been previously set to 0 or 1 is not required.    In 

Algorithms B and C, however, the LP optimization must be performed over 

all variables and checks must be made to ascertain whether a variable 

is free or not.    These two factors would seem to be the major causes of 

the increased computation times.     As further confirmation of Algorithm 

D's dominance, we  appeal to the Remark in Chapter IV which  in essence 

establishes an upper bound on the savings which can be achieved by 

using Algorithms B and C instead of Algorithm D.     By coupling this 

bound with the additional bookkeeping and optimization costs alluded 

to earlier, we have some indication of why Algorithms B and C failed 

to perform as well as Algorithm D.    We note however that it is entire- 

ly possible that results could prove to be different if solution methods 

of recent years   (now obsolete)  had been used as the primary building 

blocks for a parametric right hand side knapsack algorithm. 

It should be noted that ordering the right hand side values in 

ascending or descending order is not overly important,  except  in the 

case where the change  from one  right hand side to the next is ve:y 

small.    In such a case there are advantages to both orderings.    If the 

largest right hand side problem is solved first,  then the optimal solu- 

tion may remai». feasible for the next smaller right hand side,  and by 
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monotonicity its explicit solution may be avoided.  If the smallest 

right hand side is solved first, then the optimal solution value may be 

an excellent lower bound for the next larger right hand side. On bal- 

ance it would appear that the potential savings would be greater if the 

largest right hand side problem were solved first.  It is interesting 

to note that the feasibility recovery technique (step 5 of Algorithm D) 

was not effective. Computation times were better when step 5 was de- 

leted. The major reason for this is that the feasible solution genera- 

ator for (P. ) nenerally gave a better solution. 

Finally, we mention that a tradeoff point exists for solving 1) by 

Algorithm D as opposed to DP. Horowitz and Sahni [1974] have devised a 

DP algorithm which effectively splits the knapsack problem into two 

separate problems each being one half the size of the original problem. 

This allows savings not only in storage but in computation time as well. 

While this approach is slower than Algorithm A for (P) , it does possess 

the property that optimal solutions for all right hand sides 1,2,...,B 

are found as a by-product. It follows that as K increases in 1) , the DP 

approach becomes more attractive.  Using a correction ratio of 8:1 for 

computation times on the IBM 370/165 as compared to the IBM 360/91, we 

estimate (using HS's results) that the breakpoint for a 50 var.Lab]e 

Knapsack is in the range of 12 right hand sides. That is, if K > 12 

for 1), then the DP approach becomes more attractive.  However, as the 

number of variables increases, DP solution times increase markedly. 

For example, using HS's results again, the breakpoint is 22 right hand 

sides for a 60 variable knapsack. 
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C.    The 0-1 Knapsack Problem with a Finite Number of Objective Functions 

In this section we consider problem 2).    In this PILP the feasible 

reqion remains constant, while the objective function varies.     Basical- 

ly, Algorithms B, C, and D remain the same with two exceptions.    Call 

the modified algorithms, B", C ,  and D'.    First, the feasibility recov- 

ery technique is modified to:     for x* optimal in  (pk)»  x* is  feasible 

in   (P.   ,)  with value   (c + f,   ,)x*.    Second, the variables must be re- 
k+1 k+1 

ordered by descending bang-for-buck for each problem.    While or.? may 

think that this reordering is unimportant computationally, we shall see 

that sort time is actually a substantial part of total computation time. 

Algorithms B'  and C  were not tested for this parameterization 

because of the poor performance of Algorithms B and C for problem 1) . 

The reasoning used in discarding these algorithms is threefold.    First, 

the computer implementation is quite similar to that used for 1).    Thus, 

since bookkeeping and setup costs took much of the computation time in 

Algorithms B and C,  it is clear that such would be the case  for B*  and 

C'   also.    Second,  the feasibility recovery technique was ineffective 

for 2).    This paralleled the ineffectiveness of the  feasibility recov- 

ery technique for 1).    Third,   scratch tree stability  is worse, general- 

ly,   for 2)   than for 1).     '"his  follows since in the branch and bound 

procedure employed,  branch variables are always  chosen by best bang- 

for-buck.    Thus in 1),  the branching remains stable since the bang-for- 

buck ordering remains the same.    However, in 2)  this ordering generally 

changes from (P )   to  (pi.+1) •    We conclude, then, that Algorithm W dom- 

inates B*   and C. 

Algorithm D*  was coded,  and test problems were run.     Problems were 
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yenerated as explained earlier with the additional objective   functions 

randomly generated from the original objective function as  follows. 

One thiid of the cost  coefficients were varied by ±10%,  one third by 

t5%,  and one third remained the same.     It is  interesting to note  (even 

in the  absence of comparison algorithms)  that in the  100 variable prob- 

lems,  sort time consumed some 40% of total computation time.  See Table E. 

Finally, we note that use of a DP algorithm for 2)  would require 

K separate applications.     Since Algorithm A dominates the best DP algo- 

rithm.  Algorithm D*  would dominate it as well. 

D.    The 0-1 Knapsack with a Continuous Objective Function Parameteriza- 

tion 

In this section we consider problem 3) •    This problem may be 

thought of as finding optimal solutions for all possible weightings of 

two criteria.    For example,  in a capital budgeting problem, management 

may be  interested in maximizing some combination of net present value 

and of pay back over the  first three years of a project. 

From Theorems 5 and 8 we know that v(Q0)   is piecewise  linear and 

convex,  and that it is possible to deduce optimality over a range of  6 

by verifying optimality at certain values of 6.    Our procedure uses 

Algorithm A as a major building block. 

Algorithm D": 

1. Set  9 = 0. 

2. Solve (Q ) by Algorithm A getting an optimal solution, x*(e).  For 
9 

each feasible solution, x(e), which is found, add the straight 

line (c + ef)x(e) to LB(6) (the convex lower bound function for 

v(e)). 
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3. If 6 « 0, set 6 - 1 and go to 2. 

4. Check whether x*(6) can be deduced to be optimal over some range 

of 6.  If optimal solutions have been found for V 6 e [0,1], stop. 

Otherwise go to 5. 

5. Choose a new value of 9 which is a breakpoint of LB(6) , which has 

not been proven to be optimal, and which is closest to the previ- 

ous value of 6.  Go to 2. 

This algorithm relies on building up a lower bound function for 

v(Qa) by solving (QJ at the end points, e = 0 and 0 ■ 1. Then utiliz- 
9 0 

ing the power of Theorem 8, the next value of 6 is taken to be a break- 

point of IiB(0) which is closest to the old value of 6, and which has 

not been proven optimal as yet.  This particular point is chosen for 

three reasons. First, the value of LB(0) is likely to be a good feas- 

ible solution for (Q«)• Second, reoptimization tr-thods (when employed) 

are more efficient, in general, for a value of 0 close to the previous 

value.  Third, by choosing a breakpoint of LB(Ö/ the potential for de- 

ducing optimality over a range of 6 is greater. 

Computational results are shown in Table F.  Each component of f 

was randomly generated by a uniform distribution ü[10,100] which had a 

50% correlation coefficient with the corresponding c..  Note that the 

number of values of 0 for which (Q.) is solved, is generally slightly 

less than twir.» that of the number of optimal solutions found for 

v 0 e [0,1].  This suggests that the irethod for choosing the next value 

of 0 is quite effective.  Also note that sort time for the 100 variable 

problems comprises about 40% of total computation time. 
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Table A 

Comparison of HS Algorithm and Algorithm A Omitting Steps 1-7 

(Time in milliseconds excluding I/O and sort time 

on an IBM 360/91) 

Problem Number of Algorithm A 
Identifier Variables H&S Omitting Steps 1-7 

1365 50 6 4 

1397 50 8 5 

1398 50 8 6 

1326 50 12 8 

1406 50 7 5 

1366 50 16 11 

1282 50 7 5 

1340 50 15 9 

1288 50 9 7 

Total  for 9 problems 98 

Average for 9 problems    10 
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Table B 

Computation Time in Milliseconds for Algorithm A 

(excluding sort and I/O time on an IBM 360/91) 

'1 

Number of  % Reduction Time for Time for Total 
Problem Variables  in Steps 1-7 Steps 2-7 Steps 8-18 Time 

1365 50 88 2 0 2 
1397 50 82 2 1 3 
1346 50 62 2 2 4 
1326 50 56 2 4 6 
1406 50 82 2 1 3 
1366 L0 58 2 6 8 
1282 50 80 3 1 4 
1340 50 82 2 3 5 
1288 50 78 2 3 5 
1468 50 86 2 1 3 

Total 21 22 43 
Average 75 2 2 4 

2823 100 89 3 2 5 
2772 100 65 3 2 5 
2763 100 67 3 5 8 
2945 100 88 3 1 4 
2795 100 99 2 0 2 
2706 100 85 3 5 8 
2589 100 99 3 0 3 
2992 100 95 3 1 4 
2447 100 94 3 0 3 
2771 100 86 3 1 4 

Total 29 17 46 
Average 87 3 2 ^ 

5531 200 86 4 3 7 
5790 200 79 4 10 14 
5423 200 94 4 2 6 
5641 200 99 5 0 5 
5614 200 90 4 3 7 
5536 200 94 4 2 6 
5108 200 93 4 2 6 
5274 200 95 5 1 6 
5448 200 92 4 4 8 
5734 200 93 4 4 8 

Total 42 31 73 
Average 92 4 3 7 

63 

mmm — ■'—•--—-'   '-■- ..i,    ,. -,.;^.^...^.^..  _...       ..u^ 



lMW%''rf*)j^'M!^gy!<^»^wiwiwi^^  .m~  —  _-.. 

Table C 

Relative Increases in Computation Time 

as a Function of the Number of Variables in a Knapsack 

Number of Variables KI_ Algorithm Algorithm A 

50 1.0 1.0 

100 1.7 1.1 

200 4.2 1.7 
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E 

Table E 

Algorithm D1   (Traditional)  for the Knapsack Problem with 10 Objective 
Functions.     (Time in milliseconds excluding I/O but including 

sort on an IBM 360/91) 

Number of 
Problem   Variables 

Sort 
Time 

Time 
Excluding Sort 

Total 
Time 

1365 50 26 39 65 

1397 50 26 36 62 

1348 50 27 57 84 

1326 50 27 72 99 

1406 50 27 52 79 

1366 50 27 73 100 

1282 50 26 39 65 

1340 50 26 60 86 

1288 50 25 62 87 

1468 50 26 44 70 

Total 263 534 797 

Average 26 53 80 

Average/objective 
function 

3 5 8 

2823 100 61 78 139 

2772 100 64 75 139 

2763 100 60 83 143 

2945 100 61 62 123 

2795 100 60 74 134 

2706 100 62 84 146 

2589 100 61 62 123 

2992 100 61 78 139 

2447 100 62 118 179 

Total 552 714 1266 

Average 61 79 141 

Average/objective 
function 

6 8 14 
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VI.     THE  PARAMETRIC GENERALIZED ASSIGNMENT PROBLEM 

Consider the problem: 

mm 

Xij-o,i 

(A) 

ZEc..x. , 
id jeJ    1D 13 

Z    r,.x,,   < b. 
.  _    i]  i] -   1 

x, .  - 1 

V .   e I 

V j   -. J 
iel 

where c.  > 0,  r.,   > 0,  and b.   > 0.    This problem has been referred to 
ij - ij 1 

as the generalized assignment problem.     Let the index set I denote a 

collection of eigents,  and let the index set J denote a collection   >f 

tasks.    Eich tesk j  is to be assigned to exactly one agent, and each 

agent i may perform a collection of tasks as  long aa these tasks do not 

violate the agent's  resource,  b..       The amount of resource which agent 

i must use to perform task j  is denoted by r. .,  and the cost to perform 

the task is denoted by c. ..      The problem, then,   is to assign each task 

to an agent such that agent resources are not violated,  and such that 

the total cost of performing the tasks is minimized. 

Various real world problems can be modeled accurately as gener- 

alized assignment problems.     These include scheduling variable length 

television '""•.nmercials  into time slots,  assigning software development 

tasks to computer programmers,  and scheduling payments on accounts 

which require  "lump sum" payments.    See Ross  and Soland   [1974]   for 

other examples  and motivations. 

In this chapter we present an efficient branch and bound algorithm 

(Ross and Soland [1974]) for (A) which utilizes a Lagrangean relaxation 

as the primary relaxation.     Thus a linear programming relaxation is not 
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required.    After this we consider three parameterizations of  (A) , namely: 

4)     For k =  1,...,K solve: 

mm E      I      c4 4x,4 
xij-0,l        iel jeJ      13  13 

(V 
Z      r^x      lbi -h.k    viel 

j e J 

I 
iel 

x. .  =  1 
ID 

V j  e j 

5)     For k =  1,...,K solve: 

I min 
x^-0,1 

I      E       (c, ,   +  f. ., )x. , 
^       ^ 1] iDk    ID 
iel DeJ 

<v jeJ 

iel 

r. .x. .   < b. 
ID  ID  -    i 

x. .   = 1 
ID 

Viel 

V j  e J 

6)     For V 0 e   [0,1]   solvei 

nan 
x. .=0,1 

ID 

V 

E      E       (c     + ef    )x 
iel jeJ J 

E        r.,x. .   < b. 
■   T        iD  ID —    i ^eJ J     -" 

E 
iel 

x. .   = 1 
ID 

Viel 

V  j e J 

where h., ,   f. ., ,   and  f. .   are scalars. 
ik      x^k 13 

Algorithms are presented for 4),   5),   and 6),  computational results 

are given,  and conclusions are drawn regarding the most efficient 

algorithms for each parameterization. 

A.     An Algorithm for the Generalized Assignment Problem 

Ross and Soland   [1974]  present an efficient branch and bound 
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algorithm for  (A)  which does i.ot use linear programming as the primary 

relaxation.     Rather,   a relaocation is used which requires the solution 

to a number of 0-1 knapsack problems.    We present a variant of their 

approach utiliring the concept of Lagrangean relaxation  (Geoffrion 

[1973]) . 

Before stating the algorithm,  the primary relaxation will be 

developed.    Consider the relaxation of   (A)• 

mm 
x. .=0,1 

(LGR, 

id jeJ 

Z 
iel 

c. .x.. 
ID  ij 

i] 
= 1 V j e    J, 

This relaxation simply ignores the agents'  resource constraints, or 

equivalently a vector  ß = 0 is assigned to these constraints,  and the 

term    Z    3. (   Z    r, ,x. .   - b.)   is placed in the objective function.    Thus 
.  _    i   .  _    ij ij        i 
iel        DEJ 

(IGR^)  may be solved as a special linear program by replacing x. .=0,1 

by 0 < x. ,  < 1 .    It is obvious that an optimal solution to the linear 

program  (LGR..)   is an  integer solution which satisfies  the  constraint 

x..=0,1  .    Call this  solution x 
GUB 

It is also easy to see that. 

optimal dual multipliers,   X.   ,  for  (LGR1)  lie anywher« in the range 

[c.   , ,c.   .]  where c.    .is the smallest c. .  in column  j,  and c.    .is 

the second smallest c. .   in column j.    A second  (and generally tighter) 

relaxation is: 

min     ( E  £  c. .x. .) <■ E  X . (1 - E x. .) 
x. =0,1  iel JEJ  ^ 1:)   jeJ  :,    iel 13 

ID 

Z      r. .x. .  < b. 
i]   il -    i 

Vie     I, 
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which is equivalent to; 

EX.    -    max I      I       (A.-c,,)x 
jeJ ^ x. .=0,1 jeJ id        ^        ^      3 

(LGR^ 
jeJ 

r,.x,.   < b.      Viel 
ID  ID  -    i 

where A.  is cnc^en to be equfl to c.   .  V j  e J •     Note that this 
3 V 

problem separates on I into   |l|  independent 0-1 knapsacks.    Also it is 

GUB 
clear that all variables which are equal to 0 in x        may be set to 0 

in an optical solution to   (LGR ).    This  follows since it  is assumed 

that r. .   > 0,  and since the corresponding cost coefficient   (X.  - c. .) 

is less than or equal to 0.     Thus over all  jll  knapsacks there are a 

total of only   |j|   free variables.    An optimal solution to   (LGRJ  will 

be called x 

After introducing some additional notation,  a branch and bound 

algorithm WLII be stated.     Let S be the set of variables in a partial 

solution.     In other words,  S = { x. .   I  x. .  is assigned a value of 0 
ID   '     i] 

or 1  )   .     Let J    =  {   j   I   j   e J and ? x. .  ■ 1  for x. .  e  3  }  .    Let   (A) 
F ' ID ID 

be as given earlier and let   (B)  be: 

(B) 

£ c    :;   . + min I      I      c. .x, . 
x. .ES      

1;     'J      x, .=0,1      iel JEJ,,      ^    ^ 
ID ID J     F 

X. .«fS 
ID 

I 
iel 
x.^s 

x. .   = 1    V j  e J,, 
XD J F 

Let   (C)   be: 
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(C) 

l       c.,xÄ.+      l      A.  - max I        T.    U.  - c, .)x. . 

1J F xljiS F 

Z        r, .x, ,   < b.   -      E        r»-x«4 Viel 

x. .jts »fi 

Let (C) be (C) with ^.«0,1 replaced by 0 ix.. ^1 . 

Algorithm E: 

1. Initialize the candidate list to consist of  {A), and let z* be a 

large number.     Set S = 0 and J    = J. 

2. Stop if the candidate list is  empty:    if there exists  an incumbent, 

then it is an optimal solution  for  (A) ,  otherwise   (A)   has no 

feasible solution. 

3. Select a candidate problem  (CP)   from the candidate list using  a 

LIFO rule. 

4. Solve  (B)   for this candidate problem and get a so^utioi x       ,     If 

v(B)  ^ z" or no  feasible  solution is found,  go to 2.     If 

XGUB  i)(lj   x  j   is feasible  in   (A),  go to 9.     Otherwise,   find 
s_ 1:] 

a vector A,,  each component of which corresponds to a  j   e J   , 
r 

where X, is chosen to be the second smallest c. . in column i 
D ij 

such that x. .jifs. If a At does not exist for some j e J , 
ij ] F 

set i* = {i|x.? = 1}, and go to 11. 

5. Solve (C) .  If v(C) >_ z*, go to 2. 

6. Solve  (C)   and get a solution x   '  .     If v(C)   > z*,  go to 2. 

■7       m       *. *e       LGR MOD ^ MOD II    .it        .    .      . 7.    Try to modify x        to x so that x       u   (ux. .)   is  feasible 
S     ^ 

in   (A) ,  and such that the corresponding objective  function value 

is equal to v(C).     If successful,  go to 10. 

73 

^■r n..!.. i ---.-—h.^ ■,!—- ,-»■ 1—>.—^__—^—         ■- i i — -    -    ■  -■     . .. ..     . ■ , itimmi^mtitmimmM 
-■■■  ■ ■ ■ ■       ---"■* 



mmmm ■■ii«Mli»-a^^p^w<   ■in i ■  ' ' ■•»• in .i|i..,ii,».-....wi..,mi in      11;   ,—,.^,.,.1 .   ,..,. .  ,—      .^i|i    ...1^.1 nn. .,.-—^, ■ 

8.     Separdtf   (CP)   into two new problems by  finding that variable 

which satisfies: 

t. 
i*j* 

= max 

ID l-i 

If there is a tie,  break it arbitrarily.    The new problems are 

placed in the candidate list in the order  (CP|x *-4 * i«3 
= 0)   and 

(CPlx.^..^ = 1).     Update S and J„ for each new problem.     Additional 
1*1* F 

variables may be assigned to 0 in  (CP|x.^.# 1):     a)     x... = 0 

if i fl i* and x        ^ S;     b)     x.4J = 0 if x.t_. i S  and r 
* '   ■"       '     "i*j *'   "i*j i*j 

b, 
x,..eS 
i*j 

E      r...x.. ,   for j  ^ j*.    Update S,  and go to 2. 
„    i  3  i   i 

r    . ,^ /n^ J        M0D GUB 

9,     Set v(C)   - v(B)   and x        = x       . 

10. An improved feasible  solution for  (A)  has been found.     Record 

this solution as the new incumbent, x* = x ^1(1' x. .)   and set 
S 13 

z* = v(C).  Go to 2. 

11. Add the problem (CPIX..,? = 1) to the candidate list. Update S 
1*3 

and J  .    Additional variables may be set to 0:     x.^,  =  0  if 

x. . .  i S and r., .   > b. 
i*D I'D 

E        r.... x....   for D  ^ D   .     Update S, 
„   i*n I*D 

1*3 and go to  2i 

In step 4,   (B)   is solved and the usual  fathoming tests  are 

employed.     If all  fathoming tests fail,  an attempt is made to tighten 

the  relaxacion Ly solving   (C) .     However if some X?   ,   j   e J    does not 
3 F 

exist,  this implies that only one agent i* is available  to handle task 

j 

peg tu 1, additional variables may be pegged to 0, thus hopefully 

tightening the relaxation even further. If a peg to 1 is not possible, 

and all fathoming tests for (C) fail, then (C) is solved in step 6. 

Hence, x.^? may be pegged to 1 in step 11. As a result of this 
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Note that Algorithm A is used to solve each individual knapsack. Of 

course, the knapsack algorithm need not be used for agent i if the x 

solution does not violate that  agent's   resource.     In step 7,   tasks 

which are  not assigned  in the solution  to   (C)   (this occurs since the 

L    x..=l    VjeJ constraints  have been relaxed)   are reassigned to 

GUB 

itl iJ) 

the available agent with the second smallest cost.     If all  such tasks 

are reassigned, and the knapsack constraints are satisfied,   then this 

modified solution is  feasible and has  an objective    value precisely 

equal to v kC).    Thus a new incumbent is generated.     In step 8 when all 

fathoming  tests  fail,  branching must occur.    The branching criteria 

uses  a weighted penalty for not choosing   an agent  i*  to perform a task 

j* multiplied by the current  amount of  resource available to agent  i*. 

Note  also  tha'   the ordering of the new  candidate problems in the 

candidate  list is such that  the x....... =  1 branch is investigated first. 

Computational results are presented  in Table G.     The  50 variable 

problem is  taken from Ross and Soland   [1974] .    The nine versions differ- 

only  in the  agent resources   is shown.     All other test problems were 

generated per Ross and Soland.     The  r. ,,c. .  were randomly generated 
i:     ID 

with  distributions U[.5,25]   and U[10,50]   respectively.     Each b.   was set 

equdJ   to 9*|j|/|l|   +  .4*{max       E     r, .x   .}   where x is  an optimal 
iel    jcJ    ^ ^ 

solution to   (LGR ).       The results  in Table G  show that the algorithm 

is  very efficient for most problems.     Note that our algorithm improves 

upon the Ross  and Soland version for the  50 variable problems by 

investigating fewer nodes    and solving  fewer 0-1 knapsacks.     Couplod 

with Ross  and Solana's results,  we conclude that the  algorithm is  an 
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order of magnitude  faster  than other algorithms  such as RIP30C which 

is  a general purpose 0-1 code,   and  IPNETG which is a branch and bound 

generalized network code. 

3,     The Generalized Assignment Problem with a Finite Number of  Right 

In this section we consider problem 4) .    By allowing the  right hand 

side  to vary,  flexibility is  introduced into the model.     This  allows the 

analyst to examine the effect of changes  in agent  resources.     We begin a 

formal analysis of 4)  by investigating the problem dependent techniques 

of chapter III.    Then the  factors affecting the scheduling of solution 

priorities will be discussed,  and three algorithms will be presented. 

Finally,  computational experience will be cited,  and conclusions d- wn 

concerning the most efficient algorithm. 

The use of reduction techniques  in 4)  does not appear to be 

promising.    We mention one  such technique,  and then point   out its 

shortcomings.    Consider agent i  and tasks  j    and j     .     Let M.   = 

max {b.   - h     }   .     The value M,   is the maximum resource  available 

to agent i over all  K problems.     Ifr.,     +r..     >M.   ,   then 
ij, ID-, i i /. 

x, ,     + x. ,     < 1 is a valid constraint  for   (P, )   V k = 1,...^  .     However 

the  addition of such a constraint destroys the structure of the pioblem, 

and consequently the solutions  to various relaxations   (i.e.   (LGR..))   are 

no longer analytic in nature.     The crux of the situation is that  in 

attempting to tighten  the primary relaxation,  the  structure of the 

problem is destroyed,   and hence  solution efficiencies are  lost.     Thus, 
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certain  reduction techniques can actually complicate the  problem,   and 

in  fact  their incorporation into an algorithm may retard efficiency. 

We  now consider feasibility recovery techniques.     Suppose  that we 

have  found a  feasible solution x for   (P.)  which is not  feasible  in   (PJ. 

Further,   suppose that not all  agent  resources are violated by x in   (P ) . 

One  approach  is to reassign tasks  from an overassigned   (i ufeasible) 

agent one at  a time such that each reassignment is made  at the  smallest 

additional cost,  and such that  it is made  to an agent with sufficient 

resource  available.    Other approaches can also be devised ad infinitum. 

Next are bounding problem reoptimization techniques.    Suppose  that 

at a generic node in a branch and bound tree,   (LGR_)  has been solved to 

optimality  for a candidate problem associated with   (P  ) .    Can this 

solution be  reoptimized efficiently  for the candidate problem at that 

node which corresponds to   (P»)?     In general the answer is no.     There 

are  two  reasons for this.     First,  additional pegging of variables to 

0 by  ii.feasibility  (as in step 8b of Algorithm E)  may occur if resources 

are  reduced  from  (P )  to   (P ) .     Conversely  if resources  are  increased, 

variables may r.o longer be pegged to  0.     Of course  if  feasibility pegs 

are  not enforced,   tnis reasoning does  not  apply.     Second,  as we have 

seen  in  chapter V,  solving closely  related 0-1 knapsacks  is best 

accomplished by solving them separately.     We observe,  however,  that if 

the change  in the feasible region  is monotone,   ant' x'      remains  feasible 

T r"R * 
in   (P   ) ,  then x        is optimal  for the  Ce^didate problem corresponding 

tO     (P2). ; 

Wide range bounding techniques may also be employed. Once again 

suppose that a candidate problem relaxation associated with (P ) has 
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been optimized at a generic node.    We wish to calculate a dual bound 

for the candidate problem associated with  (P-)  at that node.    Such a 

hound may be calculated   (cf.   chapter III) , but one must be careful to 

use  "good" dual multipliers in calculating the bound.     (Dual multipliers 

are said to be "good" if the corresponding Lagrangean relaxation, which 

uses these multipliers,  generates a tight bound.)      If  (LGR )  has been 

solved to optimality, then "good" dual multipliers are not readily 

available since  (LGR.)   consists of  |l|   independent 0-1 knapsacks.     It 

is generally true that deriving "good" dual multipliers for an ILP is a 

difficult task.    Nonetheless,  if  (LGR.)   has been solved,  dual multipliers 

for the continuous relaxation are available, and a dual bound may be 

calculated for the candidate problem corresponding to   (P ) . 

We now turn to the factors affecting the scheduling of solution 

priorities.    Tightness of the primary relaxation as a function of the 

right hand side can best be explained by using the formulation: 

'V 

min E       E     c..x.. 
x    =0,1    iel jeJ    ^  1:) 

E     r. .x. .  <  b Viel 
jeJ    Xj  ij - 

E 
iel 

x. .  = 1 V j e  J 
ID 

LGR where b is a non-negative scalar.     As b  increases,  the solution x 

for   (LGR  )   comes closer to  feasibility because the knapsack constraints 

become less constraining.     In  fact,   for a sufficiently large value of 

b,  X^    is  feasible in   (S, ) ,   and hence  is optimal in   (S. ) .     The rela- 
D D 

tionship between v(S  )   and v(LGR  )   is   indicated in the figure below. 
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V(-) 

— v(LGRj) 

(Note that the graph will not be continuous,   in general, but  is drawn 

that way  for the  sake of simplicity.)     By referring to Table G  for the 

50 variable problems,  we see that  as the agent resources decrease,  the 

number of nodes  investigated generally  increases.     This empirical 

behavior,  when coupled with the graph above,   substantiates the belief 

that as the tightness of the primary relaxation deteriorates,   a problem 

becomes more difficult to solve   (in terms of  the number of nodes 

investigated). 

The behavior of the individual integer variables in an optimal 

solution  is difficult to categorize for this particular parameterization. 

As  resources  are  reduced,  some tasks may be  reassigned to other agents. 

However it is  not a simple matter  to deduce which  tasks are reassigned. 

The persistence of scratch trees as b varies  seems to be good, 

empirically speaking,   for small changes  in the right hand side.     This 

is because the  solution to  (LGR )   remains  rather stable,  and  In the 

solution to   (LGR»)   the "most attractive" variables  tend to remain at 

a level of I.     Since the branching rule is to branch on the  "most 

LGP attractive"  variable which is equal to  1 in x       ,   the ordering of 

potential branch variables tends  to remain stable,   and hence the  scratch 

trees remain stable.     The cause of instability in general is the 

GUB 
pegging of variables to 0 by infeasibility.     This may cause x to 
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change, which in turn changes x      .    We note that if the pegging by 

infeasibility were not implemented    the scratch trees would tend to be 

moro stable.    Of course this stability is bought for the price ot 

larger scratch trees, since fathoming power at a node is reduced when 

the  logical pegs to 0 are not enforced. 

Next we present three approaches for solving 4), each of which uses 

Algorithm E as a primary building block.    The firs: is a serial approach 

which utilizes an initial separation consisting of the fathomed nodes 

from the previous   (P ).     Recall that we define   (P.)  and (Pk+1)  to be 

relatively monotone if F(P )  2 F(Pic+i
) *    This aPProaeh is similar in 

spirit to Algorithm B of chapter V.B  . 

Algorithm F; 

1. Set k = 1.    Solve  (P ) by Algorithm E getting an optimal 

solution   (x*), . k 

2. If k > K,   stop.    If (P )   and   (Pk+1)   are relatively monotone,  and 

if   (x*)     e F,(pv+i
)' then  (x*)v is 0Ptilnal in ^k+i5'   so let 

k = k + 1,   and return to the beginning of this step. 

}.     Set k = k + 1.     If k > K,  stop. 

4. Use a  feasibility recovery technique on   (x*)^-,   to fir-d a good 

feasible  solution for  (P ) .     Call it   (x*)k and its corresponding 

oojective value, z*. k 

5. Use  the  frontier of fathomed nodes  from  (Pk J   as an initial 

candidate list,  and order the list in increasing order of optimal 

relaxation value calculated for the   (CP     •,)  problems.    With this 

' ordered candidate list solve   (P  )   using steps 2-11 of Algorithm E. 
j 

Go to 2. 
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Note that under monotonicity,  step 2 may allow one to avoid explicit 

solution of a particular  (P. .,) •    Step 4 can be expanded to allow a 

feasibility recovery technique for  (Pv.1)   to be invoked whenever a 

feasible solution for   (P.)   is found.    This option is incorporated in 

our computer implementation.    In step 5 if  (P^)   and   (Pk+1)  are 

relatively monotone,  it may be possible to "automatically"  fathom a 

candidate problem if vUCP^)) ^ z* .    This follows since 

v(P )   ^.v(P      ).     Also of course an automatic fathom occurs if 

Z      r.,x..   >b.   -h.,   for some i  e I. 
xirs 

A second approach  is  lexicographically serial which is similar in 

spirit to Algorithm C in chapter V.B. 

Algorithm G; 

1. Set k « X. 

2. Initialize the candidate list to consist of (P ) V k = 1,...,!(. 

Individual incumbent solutions are denoted by (x*), and solution 
k 

values by z*.     Set J    = 0,  S    = 0 V k =  1,... ,K.    Go to 4. 

3. Set k = k + 1.    If k > K,  set k = 1. 

4. Stop if the candidate list is empty:     (x*)     is an optimal solution, 
iC 

and z* is the optimal value (if they exist, otherwise (P ) is 
K K 

infeasible)   for V k = 1,...,K. 

5. If k  > K,   set k =  1.    Select a candidate problem  (CP )   by a UFO 

rule.     That  is,   choose the last candidate problem in the list 

which has a k subscript.     If none exists,  set k = k + 1,  and 

return to the beginning of this step. 

6. Solve   (B)     for this candidate problem and get  a solution x ^     . 

If v((B)   )   >^ z* or no feasible  solution  is  found,  go to 3.     If 

81 

..^:J^,......t.^..^^..^.^t[Mtm^it       ._,   ...-■■.. .^...-^-  ...->..-J..^........_.,,.. ■ ■.^--■i.h    |.<..i.i..l*|-»l^aM*^^ 



H"«Hi" — ■-r'"1""" '' ' ■■ > II«^»H ■VF"*"' mirnM. ,„,,;,„mw^*— -^ ,f,.„. w.  . ,—,~       ^.w-^i^mmm rtrf 

- /....  . ■ ' 

■.; 

:; 

x   IJ(U x ) is feasible in (P.)» go to 12. Otherwise, find a 

vector A, each component of which corresponds to a j e J . and 
F 

where X. is chosen to be the second smallest c. , in column j such 
j ij^ 

that x. .  i S..    If a X" does not exist for some j c J , set 

i* = {i|x « ■ 1} , and go to 13. 

7. Solve (C) .  If v{(C) ) 1 2j*f go to 3. 

LGR 
8. Solve (C) and get a solution x  .  If v((C) ) ^,2*,  go to 3. 

.•r  LGR ^  M00   ^ .  M00 11/11   \    *   .^i 9. Try to modify x   to x   so that x   U ( U x. .) is feasible 

Sk 1] 

in (P.) , and such that the corresponding objective value is equal 

to v((C) ). If successful, go to 12. 

10. Select a branch variable by finding: 

v- max 
LGR . 

x. . =1 
13 

(X. C .)-(b. - h.  -  I      r x..) / r. . 
ij   1   ik        Äj £3    i] 

x^.eS 

£=i 

If there is a tie, break it arbitrarily. Add the problems 

(CP |x. *.* = 0) V h = k,...,K and (CP |x,^.# = 1) V h = k,... ,K 

to the candidate list. Update J and S V h = k,...,K. Additional 
F      n 

variables may be pegged to 0 for individual (P ) as in steps 8a 

and 8b of Algorithm E. Update S, V h = k,...^ and go to 4. 
h 

11. Set vUC),)   = v((B)1)   and x"00 = xGUB. 
k k 

12. An improved  feasible solution to   (P  )   has been found.     Record 

this solution    as "he new incumbent,   (x*),   = x       "   (U   x. .), 
k c      13 

and set  z* = v((C)   ).     If k < K,  use  a feasibility recovery 

i: 

technique to  find a feasible solution  for   (P. .,) •    If this 

solution  improves the incumbent,   set  it equal to  (x*) ari its 

objective value to z*.     Go to  3. J k+1 

Add the problems   (CP. Ix' = 0)   V h = k+l,...,K and  (CP, lx    *  = 1) 
n1   3*3 h1   1*3 
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V h = k,...,K.     Update J    and S    V h = k,...,K.     Additional 

variables may be assigned to 0 for individual   (P  )   as  in step 11 

of Algorithm E.     Update S    V h = k,...,K and go to 4. 

Basically the procedure  is to concentrate on   (P >   in fathoming tests 

and branching criteria until  fathoming  for   (CP   )   occurs  at a given 

node.     Then at that node   fathoming tests and branching criteria    are 

applied to the corresponding   (CP-) .    Note  that  if   (F   )   and   (P )   are 

relatively monotone,  and if v(CP  ) >   z*,  then   (CP  )   is  automatically 

fathomed.     Automatic  fathoming also occurs  if no  feasible solution 

to a relaxation can be  found.     In step 13 x.^   is pegged to 1 for   (CPk) . 

However the peg may not be valid tor   (CP  ) ,  h =  k+l,...,K  .    Thus, 

(CP  Ix    ' = 0)   and   (CP, |x. „: = 1) V h = k+l,...,K are added to the 
h'   i*j h'   i*: 

candidate list.     It  is clear,  however,  that if  relative monotonicity 

holds between,  say,   (P, )   and   (P, ) ,  n >  k,   then   (CP, Ix.** = 0)  need not 
k h hi   i   D 

be added to the  candidate  list. 

A third approacn for 4)   is the serial method where  each problem is 

solved from scratch.    This approach is similar  _o Algorithm D in chapter 

V.B,   and it may be dubbed the traditional  approach. 

Aloorithm H: 

Set k = i- 

Solve   (P  )  by Algorithm E getting   (x*), • 
it K, 

If k > K,   stop.     If   (P  )  and   (P,.,)   ajre  relatively monotone,  and 

if   (x*)     e  F(P       ),   then  (x*),   is optimal  in   (P    ,),  so let 
x k+l k k+1 

k = k + 1,   and return to the beginning of this step. 

4.     Set k = k + 1.     If k > K,  stop. 
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5.  Use a feasibility recovery technique on (x*))..! to 9®t a good 

feasible solution for (P.). Call it (x*) , and the corresponding 
K iv 

objective  value,  z*.    Go to 2. 

Alternatively,   step 5 may be placed in step 10 of Algorithm E 

so that the  feasibility recovery technique  is  invoktd for  (P. .,) 

whenever a feasible solution for   (P )   is  found.    This option is used 
k 

in our computer implementation. 

Computational results  for Algorithms F,  G,   and H are given in 

Table H.     Problems were generated randomly as explained in section A. 

The first  right hand side  (for  (P ))  was generated as explained. 

Succeeding  right hand sides were obtained by reducing all resources 

by fpproximately 2.5%  for the 250 varrabl«; problems  and 5% for the 

Süü variable problems.    Table I   gives the ratios of the relative times 

for e.ich algorithm.     Note that Algorithm F generally dominates 

Algorithms G and H,  except for the 50 variable problems where Algorithm 

G was best.     This general domination by Algorithm F becomes more 

pronounced as  the number of variables increases.    This behavior is 

mainly due to three factors.    First is the effect of bookkeeping and 

setup costs.     As problem size increases,   computation time for the 

primary rela.   ._ions   (LGR )   and   (LGR )   increases, while bookkeeping and 

setup costs  remain about    the same.     Second,   the monotoni^ity of the 

feasible regions  for this parameterization allows the automatic 

fathoming tests to be used.    If this test is  successful,  the primary 

relaxations need not be solved.     Third,  tree stability tends to be 

GUB 
good  for this parameterization due to the  stability of the x        and 

T r"o 
x   solutions as the right hand side varies. 
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C.     The Generalized Assignment Problem with a Finite Number of 

Objective Functions 

In this section we  consider problem 5).     Basically,  Algorithms 

F,  G,  and H remain the  same with three exceptions.     Call the modified 

algorithms F',  G',   and H'.     First,  the feasibility  recovery technique 

is modified so that it simply costs out a feasible  solution to   (R^) 

using the objective  function for   (R^.J'     Second,   the  monotonicity 

test  is no longer pertinent,  and third,   the automatic  fathoming test can 

no  longer be used.     However,  note that the pegs to 0 and 1  remain 

Vdlil  for V k ■ 1,. .. ,K   ,   since   these pegs are based only on   feasibility 

considerations. 

We remark that  reduction techniques  as examined  in  Section B do 

not seem to be promising  for much the same rf.asons.     In addition 

bounding problem reoptimization  and wide  range bounding techniques 

would seem to be inefficiei t as well,  due to many of the reasons 

given  in section B. 

Analysis of the    tightness of the primary relaxation in  section B 

tends  t-     confin» that  the  tightness  is a  function  of how constraining 

the  agent  resources  are.     Since   in  5)   these resources   remain  constant, 

u •       ■      •      1 GUB 

the differences  in tightness would seem to lie  in  the  initial x 

GUB        .   ,. 
solution  for each   (ly,   k =  1,...,K  .     If a particular x solution 

"almost"' satisfies the knapsack  constraints,  then one might  surmise 

GUB 
that the initial  relaxation  is  tig'.it.    Alternatively,   if an x 

solution heavily violates  the knapsack constraints,  then the  relaxation 

will be loose.    Behavior of the  individual integer variables  in an 
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uptimal solution seems to » • as obscure as for 4). The stability of 

scratch trees seems to det .1 ^»rate for 5) as opposed to the stability 

for 4).  «e propose the following reasons for this behavior.  Branch 

r.cR 
variables are chosen from among the set of variables for which x, , » 1 . 

Now x, .  = 1 (in (LGRj) implies that x.,  =1 (in (LGR.)).  However, 
i] 2^1] 1 

GTIB 
when the objective  function is varied from   (R )   to   (IO ,  say,  x 

generally changes also.    This in turn implies that x        varies. 

Further,  x   '    may vary due to the values A . which are generated directly 

from the objective function. 

We nov present a sufficient condition for an optimal solution to 

remain optimal for a certain parameterization.     Suppose an optimal 

solution,  x*,   for   (A)  has been found.    Consider the problem  (A*)  which 

for some task j,   e J has the costs c.' .    =c..    +d.  Vie! where 
1 iJ! iDi 

s dj> 0 V i  e I   .    Thus the cost for agent i    to perform task j    i 

increased by d.     units.    Such an occurrence could be due to increased 
11 

processing cost  for task j     .    We have the  following result. 

Theorem 12.    Suppose x*   .    =1.     If v(A)  + d.     < V(A|X.   .    = 0)  + min d.   , 
  Vi h -       Vi i^i   1 

then x* is optimal in  (A*). 

■ 

Proof;     Since    I    x. ,    = 1  in any optimal  solution,  and since 
iel    121 

V(A|X.    .     =0)   ^v(A),  any optimal  solution to   (A'jx.   .    =0)   must 
Vl Vl 

have a cost of at least V(A|X. = 0)   + min d.   .    But x* remains 
Vi i^i   i 

feasible  in   (A1)  with a cost of v(A)   + d.      .     Hence if the hypothesis 
i1 ^ 

holds, x* is optimal in (A1). || 

Note that any underestimate of V(A|X. , =0), such as the value 
11:J1 

v(A), may be used in the theorem hypothesis. 
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Two prublom sets were generated per Ross  and Solana  [1974].     For 

the  first set,  additional objective functions  for each problem were 

generated randomly using the original objective function.    One third 

of the cost coefficients were varied by ±10%, one third by ±5%,  and 

one third remained the same.    Table j gives individual problem results 

(11-18),  and Table K gives ratios of computation times for the 

algorithms.    We see that generally Algorithm H'  performs the best, 

with Algorithms F1  and G'  sometimes requiring more than twice as much 

computation time.    This was found to be attributable to tree instability. 

That is, the individual scratch trees were not stable from or.j problem 

to the next.    This points out the importance of scratch tree stability 

in foraiulating parametric branch and bound algorithms.    Basically the 

evidence gleaned  from these test problems is that the  set of fathomed 

nodes from (P )   is not a "good" initial separation for  (P      ).    We 

conclude that Algorithm H' would seem to be preferable  for this 

particular parameterization. 

In the second problem set, an additional objective function was 

generated by increasing all costs for one agent by 10%.     Table J gives 

individual problem results  (19-23),  and Table K gives ratios of 

computation times.    For this set of problems.  Algorithm G'  dominates 

Algorithms F'   and H'.     This contrasts with problems   (11-18)  where 

Algorithm H'  generally was best.    The reason for the difference is 

greater tree stability which is a result of the less  "radical" 

parameterization  in problems   (19-23).    Since costs  are raised by 10% 

for only one agent,  the x        and x    '   solutions tend to remain stable 

at a given node,   and hence tree stability is more pronounced. 
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In conclusion, Algorithm H* seems to be best for more "radical" 

parameterizations, while Algorithm G' tends to be best for "minor" 

IJcirameterizations. 

D. The Generalized Assignment Problem with a Continuous Objective 

Function Parameterization 

In this section we consider problem 6) . Our goal is to find 

optimal solutions for all possible weightings of two different objective 

functions. 

Due to the relatively poor results for Algorithm F" 3.n section C 

we did not code an approach using the serial method with an  advanced 

initial separation. An algorithm corresponding to G' was not developed 

because of the inherent difficulty involved in choosing values of 0 at 

which to solve a relaxation at a given node. Only the approach 

corresponding to Algorithm H' was coded. Algorithm H" is similar to 

Algorithm D" in chapter V.D with the exception of using Algorithm E 

instead of Algorithm A in step 2 and replacing LB(9) by UB(0). The 

reader is referred to chapter V.D for an explanation of the reasoning 

behind this approach. 

Test problems were generated per Rosb and Soland [1974] in 

precisely the same manner as given in section A.  The f.. coefficients 

were generated randomly from a U[10,50] distribution which had a 50% 

correlation coefficient with the corresponding c. ,. 

Computational results are shown in Table L. Note that just as 

with the 0-1 knapsack results of chapter V.D, the number of problems,(QQ), 6 

solved is slightly less than twice the number of optimal solutions 
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found over V 0 c   !0.IJ.    Thxa ii further substantiation of the 

effectiveness of the method for solving the continuum of problems 

(Q0)  V 0  e   [0,1]. 
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Table H 

Comparison of Algorithms F, G,  H for the Generalized Assignment Problem 
with 5 Right Hand Sides:    Monotone Feasible Regions 

(Time in seconds excluding I/O on em IBM 360/91) 
_+ 

Algorithm F 

mÜi?ial, 

Problem 
Agent 
Resources 

of 
Nodes 

A.  50 variable problem from 
Ross and Soland [1974] 

Total 
Time 

Algorithm G 

of    Total 
Nodes  Time 

Algorithm H 
(Traditional) 
Number 
of    Total 
Nodes  Time 

1. 88 5 .009 
80 2 .011 
7.. 41 .077 
04 7 .017 

56  * 
Setup 
Totals 

19 .031 

74 
.011 
.156 78 .110 

5 .008 
5 .010 

29 .044 
27 .042 
29 .045 

.007 
95 .156 

Randomly generated 250 variable 
problems with 5 agents and 50 tasks 

r 

: 

185 3 .018 
180 0* 0 
175 55 .189 
170 0* 0 
165 45 .141 
Setup 
Totals 103 

.023 

.371 

185 21 .064 
180 0* 0 
176 3 .009 
172 60 .240 
167 0* 0 
Setup .022 
Totals 64 .335 

179 1 .007 
174 25 .070 
170 0* 0 
165 0* 0 
160 0* 0 
Setup 
Totals 26 

.021 

.099 

146 ,387 

228 .527 

3 .015 
0* 0 

57 .200 
0* 0 

51 .175 
.023 

11 .413 

21 .065 
0* 0 

41 .155 
45 .160 
0* 0 

.023 
07 .403 

1 .004 
25 .073 
0* 0 
1 .006 
1 .006 

.019 
65 ,135 28 .108 

+    Due to the nature of the lexicographic serial approach,  computation 
times for individual problems cannot be broken out. 

* Optimal solution from previous problem is feasible, hence optimal. 
# Feasibility generator time plus setup time. 
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Table H  (continued) 

Algorithm F Aigorit hm G Algorithm H 

Number Number Number 
Agent of Total of Total of Total 

Problem Reuources Nodes Time Nodes Time Nodes Time 

5. 195 1 .007 1 .005 
189 1 .006 1 .005 
185 1 .007 1 .007 
161 55 .224 55 .210 
176 38 .128 43 .168 
Setup 
Totals 96 

.021 

.403 83 .304 101 
.020 
.415 

6. 175 41 .107 41 .109 
170 0* 0 0* 0 
166 31 .101 43 .111 
161 35 .103 57 .160 
157 221 .787 253 .920 
Setup 
Totals 328 

.030 
1.128 459 1.391 394 

.032 
1.332 

C.    Randomly generated 500 variable 
problems with 10 agents and 50 tasks 

7. 

8. 

102 1 .009 
97 1 .007 
92 1 .011 
87 21 .104 
82 25 .080 

Setup 
Totals 49 

.042 

.252 

107 1 .008 
102 1 .007 

97 33 .146 
92 16 .078 
87 39 .242 

Setup 
Totals 90 

.047 

.528 

95 11 .031 
90 0* 0 
85 1 .008 
80 23 .067 
75 1 .005 

Setup 
Totals 36 

.045 

.156 

100 ,365 

129 .586 

1 .006 
1 .006 
1 .006 

21 .080 
75 .270 

99 
.042 
.410 

1 .006 
1 .006 

33 .125 
51 .206 
63 .387 

^49 
.047 
.777 

11 .028 
0* 0 

11 .028 
33 .080 
17 .060 

.044 
78 .221 72 .240 

^ ^-J i     (iriil.^ll^i 
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Table H  (continued) 

Algorithm F Algorithm G Algorithm H 

Number Number Nrjiber 

Agent of Tota3 of Total of             Total 

rroblern he sources Nodes Time Nodes Time Nodes      Time 

10. 112 1 .007 1             .006 

107 17 .057 17             .050 

102 5 .021 19             .081 

97 35 .142 47             .200 

92 8 .026 47             .198 

Setup .040 .040 

Tota]ä 66 .292 110 .417 131             .575 

Table I 

Ratio» of Computation Times for Algorithms F, G, H with H Scaled to 1. 

Number 
of 

Problem Variables Algorithm F 
(Serial) 

Algorithm G 
(Lex.Serial) 

Algorithm H 
(Traditional) 

1. 50 1.00 .67 

2. 250 .90 .94 

3. 250 .83 1.31 

4. 250 .92 1.25 

5. 250 .97 .73 

6. 250 .85 1.04 

7. 500 .61 .89 

8. 500 .68 .75 

9. 500 .65 .92 

10. 500 .56 .73 
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Table J 

Comparison jf Alc,otithms F',  G',  H'   for the Generalized Assignment 
Problem with a Finite Number of Riqht Hemd Sides 
(Time in seconds excluding I/O on em IBM 360/91) 

Algorithm F' 

Objective 
Function 

Problem    Identifier 

(Serial) 
Number 
of Total 
Nodes      Time 

Algorithm G' 
(Lex.Serial) 
Number 
of Total 
Nodes      Time 

A.    Randomly generated 250 variable 
problems with 5 agents and 50 tasks with K = 5 

Algorithm H' 
(Traditional) 
Number 
of Total 
Nodes      Time 

11. 

12. 

13. 

14. 

a .008 
b .012 
c .012 
d .015 

e  # 
Setup 
Totals 

.015 

5 
j_022 
.084 

a 43 .115 
b 22 .068 
c 22 .05» 
d 22 .C52 
e 42 .09b 

Setup 
Totals 151 

.030 

.416 

a 455 1.630 
b 377 1.372 
c 881 3.056 
d 439 1.376 
e 754 2.888 
Setup .030 
Totals 2906 10.322 

a 1 .009 
b 1 .015 
c 1 .012 
d 1 .015 
e 1 .011 

Setup .022 
Totals 5 .084 

.056 

178 .384 

2245 5.388 

,056 

1 .007 
1 .007 
1 .007 
i .007 
1 .007 

.018 
5 .056 

43 .080 
1 .007 
1 .007 
1 .007 

21 .040 

67 
.028 
.159 

455 1.192 
377 .905 
665 1.600 
213 .511 
105 .252 

.030 
1815 4.390 

1 .007 
1 .007 
1 .007 
1 .008 
1 .007 

.023 
5 .059 

Due  to the nature of the  lexicographic serial approach,  computation 
times for individual problems cannot be broken out. 
Feasibility generator time plus setup time. 

95 

*. 

HMHUI   — II 



rmm^* ^l i in im ■• ■""— ■ 

Table J   (continued) 

Objective 
Function 

Problem    Identifier 

Algorithm F' 

Number 
of Total 
Nodes      Time 

Algorithm G' 

Number 
of Total 
Nodes      Time 

Algorithm H' 

Number 
of Total 
Nodes      Time 

B.     Randomly generated 500 variable 
problems with 10 agents and 50 tasks w;th K = 5 

15. 

16. 

37. 

18. 

a 51 .181 
b 156 .583 
c 162 .517 
d 94 .260 
e 60 .179 

Setup 
Totals 52 3 

.040 
1.760 

a 49 .192 
b 25 .111 
c 139 .617 
d 238 1.202 
e 60 .230 

Setup 
To tads 511 

.050 
2.402 

a 211 .802 
b 708 2.847 
c 388 1.836 
d 222 .915 
e 839 4.103 

Setup .098 
Totals 2365 10.601 

a 89 .453 
b 59 .236 
c 52 .215 
d 842 4.003 
e 110 .653 

Setup .102 
Totals 1152 5.662 

512 1.251 

313 1,160 

1589 J32 

51 .112 
71 .156 
49 .108 
23 .051 
25 .550 

219 
.129 

1.106 

49 .162 
1 .006 

69 .228 
143 .472 

1 .006 

263 
.124 
.998 

211 .780 
301 1.130 
355 1,311 
363 1.342 
599 2.224 

.124 
1829 6.911 

89 .312 
41 .144 
35 .123 

37« 1.330 
79 .277 

.112 
1781 6.228 623 2.308 
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Objective 
Function 

Problem    Identifier 

Table J  (continued) 

Algorithm F' 

Number 
of Total 
Nodes      Time 

Algorithir G' 

Number 
of 
Nodes 

Total 
Time 

C.    Randomly generated 250 variable 
problems with 5 agents and 50 tasks with K - 2 

Algorithm H' 

Number 
of 
Nodes 

Total 
Time 

19. 

20. 

21. 

22. 

23. 

a 19 .075 
b 10 .051 
Setup .011 
Totals 29 .137 

a 63 .219 
b 104 .453 
Setup .011 
Totals 167 .683 

a 73 .312 
b 59 .299 
Setup .015 
Totals 132 .626 

a 35 .168 
b 114 .502 
Setup .012 
Totals 149 .682 

a 39 .173 
b 24 .109 
Setup .012 
Totals 63 .294 

29 

117 

118 

155 

.093 

.317 

.369 

.591 

19 .069 
19 .082 

38 
.007 
.158 

63 .220 
85 .340 

148 
.012 
.572 

73 .315 
87 .374 

160 
.015 
.704 

?5 .163 
139 .629 

.013 
174 .805 

39 .]68 
43 .194 

.011 
63 .214 82 ,373 
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Table K 

Ratios of Computation Times  for Algorithms F',G'rf'  with H'  Scaled to 1, 

Problem 

11. 

Number 
of 
Variables 

250 

Algorithm F' 
(Serial) 

1.50 

Algorithm G' 
(Lex.Serial) 

1.00 

Algorithm H' 

(Traditional) 
1. 

12. 250 2.46 2.27 1. 

13. 250 2.35 1.23 1. 

14. 250 1.44 .95 1. 

15. 500 1.60 1.13 1. 

16. 500 2.41 1.16 1. 

17. 500 1.53 .87 1. 

18. 500 2.45 2.70 1. 

19. 250 .87 .59 1. 

20. 250 1.19 .55 1. 

21. 250 .89 .52 1. 

22. 250 .85 .73 1. 

23. 250 .79 .57 1. 
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VII.     THE PARAMETRIC CAPACITATED FACILITY  LOCATION  PROBLEM 

Consider the problem: 

min 2:      5:    c    x      +      I      f .y 
\A1 

0     id JeJ tel      1 1 

(1-) y^0'1 j-    x     _< s y Viel 

jeJ      ^ 1 

E^.-D, VJEJ 

iel    lj        : 

where c..   >     0,   f.   >    0,  S.   >  0,   and D.   >  0.    This problem is often 
13  - 1 - x ] 

referred to as the capacitated facility location problem.    The index 

set I denotes a collection of potential  facilities  (or plants or ware- 

houses),   and J denotes a collection of customers which are to be serviced 

by the facilities.     The maximum throughput for facility i is S.,  and D, 

is the demand attributable to customer j   .    The cost, c    ,  is the 

transportation cost for supplying one unit of demand to customer j  from 

facility i.    The fixed cost,  f.,  is the  cost of opening facility i  . 

A great deal of research has been devoted to this particular 

problem class.     An exhaustive survey on  the subject is given in El-Shafei 

and Haley   [1974].     Geoffrxon   [1974b]  presents an up-to-date catalog of 

current solution methodologies and computer codes available for solving 

various  formulations of the  facility location problem.    Quite recently 

Akinc and Khumawala   (AK)   [1974]   devised an efficient branch end bound 

algorithm which has dramatically reduced computation times  for   (P)   over 

existing algorithms. 

In section A we shall present a branch and bound algorithm for (P) 

which is comparable in computation time to AK's algorithm for most test 

problems,  and improves upon their results for other test problems.     In 
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section B we shall present an approach for solving the general parametric 

capacitated facility location problem: 

7)     For k =  1,...,K solve: 

min I     I    (c     + *m)*iA 
+      £    (f   + g    )y 

^k5 
yi-0,1 

^   xij 1 (si + Tik)yi       v i e I 

E      x      -   (D    + E     ) V j  e J 
iei       13 J Dil 

where d. ., , g., # T,, ,  and E,,   are scalars. 
13k      ik      ik 3k 

A.    An Algorithm for the Capacitated Facility Location Problem 

Consider problem  (P).    Wr shall begin the analysis of this problem 

by presenting basic, well-known results, and then some new results will 

be proved.    After this,  an efficient algoritluu will be stated, and 

computational results will be cited. 

Sä   [1969]   observed that in the continuous relaxation 

of   (P),   namely   (P) , where 0 <^y.   <^ 1 replaces y.  = 0,1  ,  it is possible 

to substitute the y.   variables out of the problem.    That is,  let 

y.   =    Z    x, . / S,   .    This may be done since for any optimal solution 
1 _ 3 eJ    _ 1 _ 

(x,y)   to   (P) ,  we necessarily must have     E    x. .   = S.y.     Viel.     The 

substitution is carried out by replacing the supply constraints by 

E    x..<S.     Viel»  and the objective function by 
.   _    ij —   1 
jeJ 

min E      E     (c,.  + f./S.)x. ,   .    It is easy to see that the resulting 
x..^ 0      iei jeJ      lj        1    i   lj 

problem is a transportation problem.     Hence,   (P)  may be solved using a 

transportation or network algorithm rather them a linear programming 

algorithm.    This allows for significant savings in computation time. 
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Ellwein   [1970] gives the following result. Let  (P ) ■   (P|y    - 1 

viel). 

Theorem 13.  If v(P ly  - 0) - v(P ) >^ 0 , then the optimal solution 
o 

value for (P) is not affected by setting y  ' 1 . 
o 

Basically this result states that if the added transportation cost 

incurred by closing facility i is greater than or equal to the fixed 

cost of opening facility i ,  then facility i may be fixed open in an 
o o 

optimal solution to (P). 

AK [1974] give the following result.  Let T.  ■ {j|c  . - min c. .} 
1o      o2        i  13 

and for V j e T.  let A. - min c.. . The index set T. is that set of 
o     J  ayi  J o 

o 

customers j for which facility i supplies the demand for the least 
o 

cost.    The value X . ,   j e T.     is the second smallest transporation cost 
3 o 

for customer j. 

Theorem 14.     If max E       (A. -  c.    .)x.   ,  >_ f,     ,  then the 
0 <xJ    ,< D.     jtT,       •' o        o o 

-ioj-   i 
optimal solution value  for  (P)   is not affected by netting y      «« 1  . 

o 

The knapsack problem in the theorem statement gives a measure of 

the transporation cost savings which can be realized if facility i    is 

opened.    If this saving is larger than the  fixed cost f.   ,   then the 
o 

facility may be pegged open. 

AK show that Theorem 13 dominates Theorem 14.     Specifically,  if y. 
c 

can be pegged to 1 via Theorem 14,   then it can always be pegged to 1 

via Theorem 13,  but not vice versa.    Both theorems allow one to peg 

facilities open if a particular test is passed.     For the Ellwein test a 
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transportation problem is solved for facility i.    The   (AK)   test on the 

other hand only requires a continuous knapsack to be solved for each 

facility i.      Computationally then,  the   (AK)   test is more attractive 

even though it is  a weaker test. 

We now present a result which tightens the constraint structure of 

(P).    Let Q.    ■  {j |c.    .  = min c, .  and c.    . ft min c. .},   and 
o o i        J oJ      1^1       J 

L.     = min  {  Z      D.   ,  S.   }.     If Q.     ■ 0,   then define     I      D.   to be zero. 
o jeQi    

3 o o jzQi 
o o 

The index set Q.     denotes those customers  j   for which  facility i    has 
i o o 

the unique smallest transportation    cost over all  facilities.    Let 

{x*,y*)  be an optimal solution for   (P). 

Theorem 15.     It the constraint    Z    x.   ,   <    S.   y.     is replaced by 
  .,IT—II 

JeJ o    o 
L.y.     <    E    x,   .<S.y.     ,  the optimal solution to   (?)  will .»ot be ii—  .,13—    ii 00      jcJ      o 00 
affected. 

Proof; If y* =0 the two constraints are equivalent. For y* = 1 there 
o o 

are two cases:  a)  I x* . = S.  and b)  £ x* . < S,  .  If a) holds, 
.,1]   1       ..ID   1 
jrJo     o      jcJ      o o 

the two constraints ..'.re equivalent. Only case b) remains. We will 

show that Z x* . > L. .  We assume I    x* , < L. .  Recall that 
. , x j — 1 . _ i j   1 
3eJ  o     o JeJ  o     o 

L. = min { I      D. , S. }. For some j  e Q.  we must have x* .  < D. , 
1 n      3 1 01 iDD o       :cQ. o o oJo   Jo J    1 o 

since otherwise we would have Z  x* . = Z  D. > L     So for 
IT 1  —    i   • 

DeQi      oJ       DEQi ^o 
o o 

x*   .     < D.    3   an  i,   such that x*   .     > 0.     Now by transferring one unit 
oJo Jo lJo 

of flow from x* .  to x* .  , we clearly remain feasible, but since 
1-.D     1 D lJo     oJo 

j e Q.  we have c. .  < c. .  , and so the modified solution is not only 
o ^i 1 3    1.] 1 

o 00 1 o 
feasible, but it also has a smaller objective function value. 

Contradiction.   I I 
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This  result  allow:: us to put a lower bound on the throughput of 

any  facility in an optimal solution to   (P).    By adding this lower bound 

on throughput, we theoretically tighten the primary relaxation  (P) . 

However since     £    K      » S.y.    Viel»  and since L.  _< S      V i   e 1/ we 

sea that this added restriction on throughput has no effect on   (P). 

Nonetheless,  it con be used to advantage for other relaxations which 

are tighter than   (P). 

Another result allows precedence relations of the form y.  <_ y    to 

be added to (P) .     Such a constraint implies that:     a)   if y    ■ 0,  then 

y    ■ 0 , or b)   if y    » 1, then y    = 1  .    Let V    ■  {j |c      ■ min c..} and 
2 2 1 1 Ij        . ,_      lj 

A "* 

for each j  e V,,   let  > .  « min      c, .   .    Define x, .  to be an optimal 
1 j       illlf2    iD ID 

A 
solution to v(E)  » mew. E    max {0  ,  c       - c   ^»x.. 

0  <:x. .< D.     jeJ 3 -' 3 

.Z7
X1J-S2 

Further,  define v(L)  " mauc l       (X.  - c   .)x   . 
0 <x,.< D.  jeV,  3    1       1 
- lj- j    1 

E  x  < S - E x. . 
jeV1 ^ " 

1  jeJ l3 

The value v(E) is the maximum added transportation cost incurred if 

facility 1 is used ia place of facility 2 in any facility design. The 

value v(L) is similar in meaning to the term in Theorem 14. It is a 

reasure of the savings in transportation cost if facility 1 is opened, 

«nd facility 2 is closed.  Let (x*,y*) be an optimal solution for (?) . 

Theorem 16.  if s  > S and f + v(E) - v(L) < f2/ then y* < y* in any 

optimal solution to (P) .  Henc« the constraint y_ <^ y may be added 

to (P) . 
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Proof;    Assume not.     Then y* ■ 0 and y* ■  1 in an optimal solution to 

(P).    We will show that v(p|y    - 1, y   - 0)   < v(p|y    " 0, y    - 1)   in 

order to gain a contradiction.    Suppose that we have an optimal  solution, 

(x*,y*) ,  for   (Ply.   ■ 0,   y    = 1)    What changes occur in the optimal 

let x, .  «» x* .  and x_ . 
1]        2] 23 

solution value if we now set y    = 1  aiid y_ = 0  ?     Since S    ^_ S    we may 

0    V j  c   >.    This merely reassigns all flow 

emanating from facility 2 to emanate now from facility 1.    All other 

components of   (x,y)   will be set equal to the corresponding values  in 

(x*,/*).    Clearly this modified solution is feasible.  Now v(E)   is the 

maximum additional transportation cost incurred by the switch of 

facilities.     Note that S_  is used in the knapsack  constraint for v(E) , 

since S    is  the maximum amount of throughput which can be handled by 

facility 2 in any feasible solution.    The value v(L)   is the minimum 

amount of transportation  cost which can be saved by opening facility 1. 

Note that  (S,   -    £    x, ,)   is used in the knapsack constraint for v(L), 
1      jej    ^ 

since it is the maxinvm amount of throughput for which transportation 

savings can be assured.       Observe that the v(L)   calculation is closely 

related to the calculation in Theorem 14  with the  additional stipulation 

on V    and X .  which excludes i - 2 from consideration since y    = 0  in 
i j t 

(p|y    =  1, y    = 0).     By  combining the relevant  terms, we have 

? 
f    + v(E)   - v(L)   <  f   .     If inequality holds,  then a feasible solution 

exists with objective value less than v(p|y    =0,   y    -  1) . 

Contradiction. |I 
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Observe that this  result «squires the calculation of only two 

continuous knapsacks  for each pair of facilities.     Thus the computational 

burden is liqht.    We note, however,  that if a constraint y    £ y    were 

added to  (f),  the transportation structure of the problem would be 

destroyed.    Nonetheless,   these types of constraints may be added to 

other relaxations,   and may also be used in conditioral pegging and 

penalty tests. 

We shall now give a relaxation which is at leart as strong as   (P) 

in objective value,   and which generally yields stronger penalties. 

Consider the following Lagrangean relaxation where the demand constraints 

are placed in the objective  function: 

min Z      l c..x..  +     Z    f,y.   +     Z    X,(D.  -     I    x. .) 
x. .> 0    iel jeJ      ^  l3      iel    ^^ ^^      jeJ    :]    :,      ''■T    ^ 
13- 

y-0,1 £    x,     < S.y. 

iel 

Viel, 

or equivalently 

(LGRJ) 

Z    X.D.   - max Z      Z     (.X.  -  c. .)x. .  -     L    f.y. 
jeJ    ^  :      x..>0    iel jeJ      D ij    ^      iel    1 1 

y^o.i 

Z   x. .   < S.y.      Viel. 
,  ,    in —    i i 

This is a valid relaxation and it is easily seen that v(P)  ^v(LGF(:)   > 

v(P)   if optimal  dual multipliers,   \,   from  (P)   are  used.     We mention 

that if a   transportation algorithm is used to solve   (P)   (the y, 's 

having been substituted out of the problem) ,  then the dual multipliers 

for the LP  formulation of   (P)   must be recovered from the optimal dual 

multipliers of the  transportation formulation.     The  recovery is not 

difficult to accomplish,  consisting only of elementary transformations 

for a number  of special  cases.    These transformations yield   X. 
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Unfortunately it is often the case that v(LGR ) » v(P). Thus, here 

the Lagrat.qean relaxation is no stronger than the continuous relaxation. 

However, there are at least three different calculations which generally 

tighten the relaxation measurably. 

The first is a simple improvement in the \..     Specifically, set 

X.  ■ max {X.   ,  c.   .} V j  e J where c,   .  is the second smallest 

transportation cost for customer j over all available facilities. 

This adjustment is intuitively appealing since one would envision the 

cost of increasing a customer's demand by one unit to be the transport- 

ation cost from the second cheapest facility which serves  customer j. 

It is this economic interpretation which leads to  the definition of 

\.   .    Empirically,  this choice of X has been effective  in tightening 

the Lagrangean relaxation. 

The second improvement  is the addition of the  constraints: 

L.y.   <    Z    x..     Vie1    to   (LGR,)  whPre L.   is the  lower bound on 
i'i ~ ,        ij 1 i 

throughput for facility i as given in Theorem 15. 

The third improvement  is  to append the constraint: 

Z    S.y.   >_   E    D.     to   (LGR ) .     This constraint forces  feasibility 
id JEJ    ^ 1 

of any facility design by requiring that sufficient  facilities  are 

opened to handle the  total demand.    Of course the  customer demand 

constraints may still be violated in   (LGR )   since they have been relaxed. 

By combining all three improvements, we have the  following 

tighter relaxation: 
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E    X D.   - max E      E (X.  - c    )x      -     E    f.y. 
jtJ    J  ^       O^x    <D      iel jeJ    :) 3      D      id 

y.-0,l 

(LGR^ V   i   r   I 
jeJ 

£    S y    >.    E     D 
iel jeJ    ^ 

While this relaxation may appear to be difficult to solve efficiently, 

we shall show that it is not.  By projecting on the space of y variables, 

we see that the optimization over the x variables can  be carried out 

independently.  Clearly if y.  * 0, then x. . = 0 VjeJ.  Jfy,  =ii 

_ 0  _      0 0 

then x. . = x.   VjeJ where x. .  is an optimal solution to: 
o    oJ oJ 

. (i ,X) = max        - f.  + E  (X. - c. .)x. , 
0 <x. .< D.     o  ieJ        oJ  o 
-i0j- j 

Li <-  .^/l j^Si 

Hence,    for each i e  I a continuous knapsack is solved to obtain v(i,X). 

Then the following problem is solved over y: 

max 
y,=0,l    id 

E     v(i,X)y. 

(F) Z 
ie 

S.y.  >     E     D. 
I :eJ 

Problcri  (F)   is a 0-1  knapsack problem in y which may be  solved very 

efficiently by the methods of chapter V.     Let y denote an optimal 

solution of  (F) .    We note that generally the knapsack has  fewer than 

I l| free variables,  since  if v(i,X)  ^ 0 we may set y.   *  1  in any optimal 

solution to  (F) .     Thus,   in orde*  to solve   (LGR )  we  first solve a 

continuous knapsack  in x.    .   .   for each facility i   •     Then we  use the 
io(.) o 

108 

mmmmmm 



"■ l,l I ""■ '■l    *■"■■-*■ iiM"'"iw iPif^nnwi' ■>■   i«    mimwmi    '■■■f ■■»■*-MII.» i   !■ H|IIBM> i I^I n ii u   ipup« 

I, 

'■ " 

solution values  for these knapsacks to solve a 0-1 knapsack  in y. 

Note that penalties may be easily calculated for the y variables. 

For example, suppose y. ■ I in (F). A penalty for y, ^ 0 may be found 

by solving (FJy ■ 0) or (F|y ■ 0) where (F) is the continuous relax- 

ation of (F). Thus (F) is a continuous knapsack. Clearly, at a given 

node in a branch and bound tree if v(r|y. » 0) ^z*,where z* is the 

cuTent incumbent value, we may set y ■ 1 in all successors of that 

node.    Further,   these continuous knapsack solutions may be used in 

choosing the next branch variable at a node.    Specifically,  one may 

A 
order the y    variables in decreasing order of P.  = max (0  , 

|v{F|y    =l-y.)   -v(F|y.   «y.)])   .      The branch variable  is chosen 

co be i    » {ilmax P. }   .       If a LIFO priority scheme is used,  then one 
i  i     . 

would place (CPly. = 1 - y. ) and (CPl y. = y. ) in the candidate 1 i       i        '    i i 
o o ,    o   o 

list in that order. Thus the y. = y, branch would be examined first. 
i x o o 

We shall now state an efficient algorithm for   (P).     Let K
n(K1)  be 

the  index set  for y.   set to 0(1).     Let K    = I  - K.  -   K.    . 
i 2      0   1 

Set K " K = 0,  K = I, and let z* be a large number. 

Algorithm I: 

1. 

2. For V i E K, perform the pegging test of Theorem 14.  If 

successful, set y. = 1 and set K = K U {i} 

3. For V i e K perform the pegging test of Theorem 13.  If 

successful, set y. = 1 and set K = K U {i}. 

4. Initialize the candidate list to consist of (p|y. = 1 V i e K ). 

Call this problem (CP) , and go to 9. 

5. Stop if the candidate list is empty: if Hiere exists an incumbent, 

then it must be optimal in (P), otherwise (P) has no feasible 
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so lution, 

6.    Select a proulem  (CP)   from the candidate list using a LI?0 rule. 

Reset K , K    to coincide with the restrictions of   (CP).     If BND(CP) 

exists, and if BND(CP)   > z*, go to 5. 

For V i e K    perform the pegging test of Theorem 14.     If successful, 

set y.  =» 1 and set K,  - K, U (i). * 11 

8.     For V i e K2 If 

^ » ^ U {i}. 

E S    < 2    D    , then set y    - 1 and set 

9.    Let (CP) be replaced by   (CP|y.  = 0, i e K ; y.  » 1,   i e K^) .    Solve 

(CP)  as a transportation problem getting a solution   (x,y)   . 

10. If (CP)  is infeasible,  go to 5. 

11. If v(CP)  > z*,  go to 5. 

12. If  (x,y)  is feasible  for (CP) , go to 21. 

13.     If v(CP)  + 
i:   0<y.<l 

(1 - y.Jf.   < z*, go to 22. 

14. Solve   (LGR )   corresponding to  (CP)  getting a solution   (x*,y*). 

15. If vdiGR^)  1 z*' 9° to  5- 

16. Calculate penalties P. by solving (Fly, = 1 - y*)  V i e K . 
i « l J. * 

.7.     For V i  e K    if P.   + v(LGR )   > z*, set y.  = y* and set K * = 

K #  U {i}.    If a y.  has been pegged to 0 in this  step, go to 19. 
^i 

Otherwise if a y.  has been pegged to 1 add  (CP|y.   = 0,  i e K ; 

y.  = 1,  i e K )   to the candidate  list and go to 6.     If no variables 

have pegged to 0 or 1,   go to 18. 

18.     Find i    =  {i |max P. }  .     If there is a tie, break it arbitrarily, 
ie^  1 

Add the problems   (CP|y.    = 1 - y* )  and  (CP |y.    - y* )  to the 
o o o o 

candidate list.    Associate the value BND(CP|y.     =  1 - y*  )   = 
o o 
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P      + v{LGR )  with  (CP|y       -  1 - y*  3   «"^d go to 6. 
o ' o o 

19. For V i  c K    if E S       <  E    D    ,  set y.   »  1 and   set 
2        ÄeRUK -{1}     ^      jeJ    J 1 

^ - ^   li{i}. r   2 

20. Replace the current  (CP)  by   (CP|y.   = 0,  i e K ; y.   ■ 1,   i   e K ). 

For V j  e J let X. ■ max  [X .   , c.   .}.    Go to 14. 

21. An improved feasible solution has been found.    Set z* = v(CP)   and 

record the associated solution  (x,y)   as the new incumbent.    Go to 5, 

22. An improved feasible sc1ation has been found.    Set z* = v(CP)   + 

Z_        (l-y.)f.   .    If 0- y.   < 1,  set y.  = 1, and record   (x,y) 
i:  0<y.<l 1    1 1 1 

i 

as the new incumbent.    Go to 14. 

In step 2 we perform the  continuous knapsack pegging test of 

Theorem 14 before the pegging test of Theorem 13.    While the  former 

test is weaker them the latter,   computation time is generally much 

smaller.     In step 7 the pegging test of Theorem 14  is used before 

the primary relaxations are solved.    This  is done since the pegging 

test is independent of the primary relaxation so]ution,  and in  fact 

does  not even depend on an incumbent value,   z*.    Hence  if a variable 

can be pegged to 1 via this test,   the primary relaxations will  be 

tightened.     In step 8 a simple  conditional  feasibility test is   invoked. 

This  test assumes that y.     is  set  to 0.     If total demand cannot be 
i o 

satisfied by opening all facilities in K    -  {i  },  then y      may  be pegged 
2 o XQ 

to 1.  In step 9, all y. i c K„ are substituted out of (CP) , and the 
i 2 

objective  function and constraints  are modified accordingly   (as explained 

earlier) .     A transportation or network  algorithm is then used  to solve 

(CP) .     ]n step 13,  the fractional y.   s  in the transportation  solution 

are  rounded up   (thus assuring integfr feasibility)   in an attempt to 
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generate  an improved incumbent.     Of course, even if this rounded solution 

results   in an improved incumbent,  the current candidate problem is not 

fathomed.     In step 17 a simple  conditional test is used to try to peg 

facilities open or closed.     If a facility is pegged closed,  then the 

conditional feasibility test in step 18 is invoked,  since by pegging a 

variable to 0 this test is strengthened.    Then dual multipliers are 

improved in step 19,  and the Lagrangean relaxation of step 14 is solved. 

Note that the transportation relaxation is bypassed in this case.    This 

is done  since, generally, the transportation relaxation takes much 

more computation time than does the LagriJigean relaxafjn.     If no 

variables are pegged to 0 or 1 in step 17, a branch must be made.    The 

branching criteria is to choose that variable with the largest penalty, 

P..    The two resulting problems  are placed in the candidate  list such 

that the most promising branch is examined first under the LIFO rule 

of step 6.    In step 18 note that a bound of P.  + v(LGR )   is associated 

with  (CP|y.    = 1 - y* ).    When this candidate problem is selected 
o o 

from the candidate list,  this bound is compared with z* to see if it 

may be   "automatically" fathomed. 

The test problems used were a subset of the test problems of 

Kuehn and Hamburger   [1963]   and Ellwein   [1970] .    These problems have 

served as benchmarks  for researchers  studying the  capacitated facility 

location problem.    As previously mentioned, AK have devised a new 

branch  c.nd bound algorithm which has dramatically reduced computation 

times  for this class of test problems. 

We mention that in our computer  implementation we have not 

incorporated the results of Theorems 15 or 16, and   (F)was used instead 

of  (F)   in the calculation of v(LGR ) .     In Table M,  our results are 
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■: 

compared with the published results of AK.    Care should be taken in 

comparing times for at least two reasons.    First, different computdrs 

were used.     Second,  and more importantly, different transportation 

codes were used.    Sirce transportation code time often accounted for 

over 90% of the total computation time  in our implementation,  a more 

realistic comparison would be the number of transportation problems 

solved.     In support of this, we note that AK used an out-of-kilter code 

for certain problems and a primal-dual code for others.    Both of these 

codes had a complete reoptimization capability.    Our code,  on the other 

hand, had only a limited reoptimization capability.    Specifically, given 

an optimal solution to  (CP),  reoptimization was only possible when a 

variable y.  was set to 1.    Reoptimization was not possible when y.  was 

set to 0.    As further evidence of the reoptimization capability, AK 

solved a 25 facility by 50 customer problem using the test of Theorem 

14,  and making one branch in about  .2 seconds.     With our transportation 

code these same computations took over 5 seconds.    Generally, we 

observed that  for easy problems   (15 or less transportation problems 

solved)   the  results were quite  similar.     However for more difficult 

problems,  our algorithm generally required the solution to fewer 

transportation problems. 

B.    An  Interactive Approach for the Parametric Capacitated Facility 

Location Problem 

In this section we consider the general parametric capacitated 

facility location problem,  7).     The approach which we shall propose 

applies generally to 7) ,  however,  the test problems which we have studied 

vary only one of the possible parameters at a time.    Sperifically,  we 

113 

»-'-"""iiiniiiii- i   ...—.■»■ii—um.« .mi.   i   i HI     -L..I.. .i immfM—MimtiiifcMM^i. 



 ■ iwwIP^W—"'»»—i     i illim —- "■    !■■.  i i i HIII—ITIII   i n . .^..F--■■■■<■ '    'i'. ■     —■   '     !   ^-—~ wi --<  

have tested problems with varying demand only, varying fixed costs 

only,   and varying transportation costs   (c. .)  only.    Because of the 

computer cost involved in solving capacitated facility location 

problems, we chose not to run test problems for the continuous parameter- 

izations in the objective  function and in the right hand side. 

The plan of this section is to investigate the problem dependent 

techniques of chapter III,  and the factors affecting the scheduling 

of solution priorities in chapter IV.    Then an interactive approach for 

solving 7)   is proposed,  and computational experience is cittd. 

Reduction techniques for 7)   can be quite effective.    The pegging 

tests of Theorems 13  and 14   should be used for each  (P ) .    Note that 

if a parameterization involves only the fixed costs,  then both pegging 

test calculations need only be done once.     This follows since the 

calculations  remain the same,  regardless of the value of the fixed 

costs.     All that must be done is to compare the calculated figure with 

the fixed cost for each k = 1,...,K.     For other parameterizations  the 

test of Theorem 14 may be  done separately for each k =  1,...,K,  since 

all that is  involved is the solution of a continuous knapsack  for each 

facility i for each k = 1,...,K.     The  test of Theorem 13 , on the other 

hand,   involves solving a transportation problem for each facility  i 

for each k =  1,...,K.     In order to take advantage of efficient reop- 

timization techniques  for this test one could solve the K transportation 

problems for y., say,  as a group,  reoptimizing the optinu 1 tableau from 

k = 1 for k = 2, etc.    This reoptimzation may reduce total computation 

time for this test.    Naturally,  the results of Theorems 15 and 16 may 

also be  used  for each k = 1,...,K.     In both cases the computational 
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burden is light,  even when repeated K times. 

Feasibility recovery techniques have turned out to be very 

important for this class of problems.     In fact for about one half of the 

parameterizations tested, the feasibility recovery technique found an 

optimal solution for the next problem in the parameterization.    With 

the use of thx-  solution value as an upper bound,   it was possible to 

terminate the branch and bound search without any branching whatsoever! 

We shall explain this behavior in detail later.    Clearly,  if the 

parameterization involves only the objective function,  there are at 

least two methods for generating a feasible solution for  (P )   from 

an optimal solution,   (x*,y*)    to   (P ).    First,  since   {x*,y*)     is  feasible 

in   (P_), we may simply cost out that solution using the objective 

function for  (P ).    Second, by using   an   optimal design of facilities 

for   (P ), we may solve the associated transportation problem with the 

objective function for   (P ).    This latter method was used in our computer 

implementation.     If the parameterization involves  the right hand side 

and  (x*,y*)     remains  feasible for   (P_), one may also solve the associated 

transportation problem using the optima1   design of  facilities for  (P ). 

If  {x*,y*)1  is not feasible in  {P2),  then one may,   for example, 

seldctively open enough  facilities in addition to the open facilities 

in the optimal solution to  (P )  until feasibility is assured,  i.e. 

L      S.  >_    E     Dj   .     Then the associated transportation problem can 
i:y.=l jeJ     J 

Ji J 

be solved. 

Bounding problem reoptimization techniques  can  also be very 

important.     In general at a fathomed node  for  (P.), one could take the 

optimal 1 .ansportation  tableau and use it as a starting tableau for 
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optimizing the corresponding candidate problem for  (P ).    If an inter- 

active procedure is used, one could store the optimal tableau for the 

candidate problem on disk or tape, and then read t.'iis Information back 

into core when the candidate problem for  (P.)   at that node is considered. 

Finally, wide range bounding techniques may be employed at a given 

node.    There are at least two possibilities.     First  (LGR )  may be solved 

for  (P )  using the  X from the transportation problem solved at the node 

for  (P ) .     Second,   all constraints could be absorbed into the objective 

function using the appropriate dual multipliers from the transportation 

problem solved for   (P )  at the node.    However,  since both of these 

relaxations are of moderate computational expense, the former approach 

(which is stronger)   should probably be used. 

We now turn to the factors affecting the scheduling of solution 

priorities.    Tightness of the primary relaxation for a given  (P )  has 

been found to be dependent on one main characteristic.    We assume for 

this analysis that the ratios f./S.   are equal for Viel.    Let  (x,y) 

be an optimal solution for  (P, ).    If    Z    f.y.   is  "close" to    Z    f.y*, 
k .  _    i'i -ii 

id iel 
where   (x*,y*)   is an optimal solution to   (P. ),  then the relaxation 

will be relatively tight.    Conversely,  if    Z     f,y.   is much smaller 
iel 

than    Z    f.y*,  then the relaxation will be relatively loose.    Now if 
iel 

fixed costs  are  relatively hiph with  respect,  to transportation costs, 

then facilities which are open in y* will probably be operated close 

to their upper capacities.     The  corresponding relaxation will probably 

be tight.     If,  on the other hand,  fixed costs are  relatively  low with 

respect to transportation costs,  then facilities which are open in y* 

will probably be operated at something less than their upper capacity. 
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In this case the continuous relaxation will probably be looser.    Still 

another way to look at relaxation tightness is the difference between 

£    S,y* and    I    S.y,   »     I    D,   .    This difference  is manifested costwise 
id   i 1        in   1 1     jej   ^ 
in the difference between I    f.y* and I    t.y.   .    By using these 

.   _    i i ,   _    i/i id id 
intuitive relationships, one can often "predict" the tightness of the 

continuous relaxation as a function of the parameterization. We h ve 

the following relationships: 

Type of paraineteri»ation Tendency of continuous relaxation 

increase c     's tighten 

increase  f.'s loosen 
i 

•     increase S's loosen if    Z S.y* -    E D.  is small; 
1 iel  "  1       jeJ j 

tighten if large 

increase D.'s loosen if    I S.y* -    Z D.  is small; 
^ iel 1  1      jej ^ 

tighten if large 

Note that these relationships are also dependent on the relative 

importance of transportation costs which in turn are affected by the 

number of facilities which are open in an optimal solution.   Thus total 

transportation cost   is     higher if fixed costs  are high,  since this 

implies that fewer facilities are open in an optimal solution.    So 

we see that the transportation costs have an effect opposite that of 

fixed costs on the tightness of the relaxation.     This is reflected in 

the display above. 

The behavior of individual facilities in an optimal solution as a 

function of certain parameterizations is closely related to the analysis 

above.    For example,  suppose all fixed costs rise by the same amount. 

This has the qualitative effect of making the opening of each facility 

less attractive.     Coupled with the fact that the total transportation 
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cost   for .my qiven  facility design remains the sane  for both sets of 

fixed costs,   it is easy to see that this rise in fixed costs is 

equivalent to tightening am implicit constraint on the number of open 

facilities in an optimal solution.     Similarly if demands rise,  then 

one would expect  additional facilities to be opened.     A rise  in 

transportation costs would be accompanied by a tendency toward opening 

more  facilities  also.     Of course  for certain  "local" parameterizat ons, 

such as an increase  in one fixed cost or an increase in certain 

transportation costs,   tendencies of specific variables can be  identified 

more precisely. 

The persistence of scratch trees  for the parameterizations which 

we tested was generally very good.     Such behavior would seem to be 

plausible when one  considers the size of the decision space for our 

test problems.     The number of facilities considered ranged from 10 to 

25,  while the number of continuous variables  ranged  from 200 to 1250. 

With a decision  space of dimension  25 or less,  and the empirical obser- 

vation that  the majority of facilities  are   "inqportant",   it seems plaus- 

ible that they remain  "important"   for most parameterizations of interest. 

If this  is the  case,   scratch trees should be rather stable since   "impor- 

tant"  variables  are  branched on first in our algorithm.     This has been 

borne out empirically,  and indeed this bodes well  for using a serial 

approach with an   initial separation gleaned  from the previous   (P  ) . 

'We  sbill  now present a method   for  solving problem 7) .     Due to 

the  relatively high  computer cost   for solution of  reasonable sized 

problems,  we chose an interactive  approach.     That  is,   (P ) was solved 

to optimality in one  computer run,   and then using  information  from 

this  computer  run,   another run was made  to  solve   (P  ) .     By using this 
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interactive approach,  closer control over computation time was possible, 

and a freer hand in experimentation was permitted. 

Algorithm J: 

1. Set k ■ 1.    Solve   (P  )  by Algorithm I getting an optimal solution, 

(x*.y*)k. 

2. If k > K,  stop.    If   (P, )  and  (P,   ,)   are relatively monotone, if k k+1 

their objective  lurctions are identical,  and if   (x*,y*)     e F(Pk+-|)' 

then  (x*,y*)     is optimal in  (P      ),  so let It - k + 1,  and returv 

to the beginning of this step. 

3. Set k » k + 1.     If k  > K,  stop. 

4. Use a feasibility recovery technique on   (x*»y*)jt-l  
to ^■'■nd a goo<3 

feasible solution for  (P.).    Call it  (x*,y*)     and its corresponding 
K it 

value z*. k 

5. Invoke Algorithm I  for  (P )  with the following modifications: 

a) veplace step 19 by:   "store the current index sets K ,  K , K , 

the incumbent   (x*,y*)   ,  and z*,  emd return to step 6 of 

Algorithm J." 

b) replace step 5 by:     "stop if the  candidate  list  is empty:     if 

there e;-ot;ts an  incumbent ;.t is optimal in   (P.)»   return to 

step 2 of Algorithm J." 

6. Use some modification of the branch and bound tree  for  (P,   ,)  to 
k-1 

form an initial separation for  (P ).    Put this  initial separation 

in the form of a candidate list,  and go to step 6 of Algorithm I. 

When the stop condition in step 5 of Algorithm I  is satisfied, go 

to step 2 of Algorithm J. 

In step 2,  since 7)   is a general paraiuetric problem, we require 
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identical objective functions.    However, this can be relaxed for certain 

objective  function changes.     In step 4 the particular  feasibility 

recovery technique will  depend on the type of parameterization.    In 

step 5 a modification of Algorithm I  is used in order to perform tha 

pegging tests of Theorems 13 and 14,  and other pegging tests based on 

the Lagrangean relaxation   (LGR )   for   (P.) .    This procedure continues 

until either fathoming occurs  (in which case   (P.)  has been solved),  or 

until a point is  reached where no more pegs can be made.    When no more 

pegs can be made,  control passes to step 6 of Algorithm J.    In step 6 

an initial separation based on the branch i id bound tree of  (Pk_,)   is 

generated.    The reasoning behind this approach is as  follows. 

Generally,  the pegging tests of Theorems 13   and 14  are quite 

effective in jogging facilities open at the root node.    Hence these 

tec'ts t re performed for each  (P, )  in order to reduce  the number of 
k 

frf-e facilities in the problem, and hopefu]ily to reduce the number 

or branclr's made during the branch and bound process.    A modification 

of  Iht: branch and bound tree for  (P.   ,)  is used to form an initial 
k-1 

separation because of the pegging procedure in step 5.    The modification 

caj. best be explained by referring to a typical branch and bound tree 

for  (P )   («ee figure below). 

5 A    ö 

'8    o \)  ^8 

V0    0  V0 

y =0    i  y =o 

Branch and bound tree for (P ) Frontier of fathomed nodes for (P ) 
(denoted by • ) 
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Note that vertical lines refer to pegged variables.    That Is, 

the oppoaitG branch Is automatically fathomed.    It Is important to 

realize, however,  that these opposite branches are part of the frontier 

of fathomed nodes as depicted in the figure above.    If this full frontier 

were used as an initial separation for  (P ),   the number of problems in 

the initial candidate list would be 13.    However by "collapsing out" 

the pegged variables from the tree, we may reduce the  frontier to 4. 

See the figure below. 

V0o/\y8"1 

"Collapsed" branch and Frontier of fathomed 
nodes for "collapsed 
tree  (denoted by #  ) 

bound tree for  (P ) nodes for "c-illapsed" 

While such a manipulation may appear contrived, we offer the 

following explanation.     In the seriell approach, which uses the frontier 

of fathomed nodes,  there is an underlying supposition.     It is that in 

a branch and bound tree if a node cannot be  fathomed for say,   (P ) , 

then it probably cannot be  fathomed for a closely related problem, 

say,   (P,)«    Conversely,  if a node is fathomed for  (P  ) ,  then it likely 

will be fathomed for  (P  )   also.    A variable which is pegged to a 

certain value can be thought of in an analogous manner.     If y.   can be 

pegged to 1 in   (P.)   at a given node, then it can probably be pegged to 

1  in  (P_)  also at that given node.    Hence,  instead of considering the 

full frontier of fathomed nodes for  (P ), we may eliminate the pegs 

from the tree,  and attempt to peg variables at the root node of  (P )  as 

in step 5 of Algorithm J. 
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We note that other methods for reducing the frontier of fathomed 

nodes,while still maintaining a "good" initial separation,  are possible. 

However, we shall defer discussion of them to chapter VIII. 

As a final comment on Algorithm J, we submit that the ordering of 

the Initial candidate list in step 6 can be very important.    We present 

three orderings which have proven to be effective: 

a) Order the candidate problems by the inverse ord^r in which 

they were fathomed for the previous problem.     That is,  the 

candidate problem  fathomed first is placed at  the end of the 

list,   so that under a LIFO rule,  it will be examined first. 

b) Order the candidate problems in decreasing order of their 

relaxation values  for the previous problem.     Thus,  under a 

LIFO rule the most promising candidate problem will be 

examined first. 

c) Modify the ordering in a)  or b)  by placing last in the list 

the candidate problem at which an optimal solution for the 

previous problem was  found. 

In our computational studies,  ordering b)   coupled with modification c) 

was generally the best of these orderings. 

Test problems were taken  from the problems  in Table M.     For 

example, problems 1,   2,   3,   and 4 differ only in fixed costs,  as do 6, 

7,  8, and 9,  and 16,  17,  18, and 19.    Other problems were generated by 

increasing all customer demands by some percentage   (i.e.  D.  + 5%), while 

still others were generated by increasing all transportation costs by 

some percentage   (i.e.   c. .   + 10%).    Algorithm J was compared with a 

traditional approach which  follows. 
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Algorithm K; 

1. Set k - 1. 

2. Solve  (P ) by Algorithm I getting an optimal solution   (x*,y*), . 
k k 

3. Set k - k + 1.    If k >   K,  stop. 

4. Use a feasibility recovery technique on  (x*,y*) to find a good 

feasible solution for  (P ) .    Call it  (x*,y*)    and its corresponding 
K it 

objective value z*.    Go to 2. 

A comparison of the two algorithms is given in Table N.    Note that 

the computation time includes the time for the Theorem 13 pegging tests, 

but that the number of transportation problems solved does not include 

the   (|l|  ■* i)   transportation problems  solved for this pegging test.     We 

mention that the computation time for this test is much higher than  it 

would be if a reoptimization capability were available in our trans- 

portation code.    Because of this shortcoming, the savings realized 

by Algorithm J over Algorithm K are reduced.    Note that in 4 of the 8 

parameterizations tested, only one transportation problem was required 

to solve each problem after   (P  ) .    This was due to the fact that the 

solution        generated by the feasibility recovery technique was  an 

optimal solution,  and that the Lagrangean relaxation penalties were  so 

strong that many of the remaining free facilities were pegged open or 

closed.    Then after these pegs were made, the corresponding Lagrangean 

relaxation value bounded out. 

In conclusion, we see that Algorithm J dominates Algorithm K.     For 

various reasons mentioned t-iroughout this chapter,  it is reasonable to 

assume that this domination can only becorae more pronounced as more 

difficult problems are solved. 
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VIII.     EXTENSIONS TO THE GENERAL PILP AND AREAS FOR FUTURE  RESEARCH 

A.    A Solution Method for the General PILP 

In the preceding three chapters we have analyzed PILPs for special 

problem classes.     In this section we extend what we have learned to 

the general PILP: 

8)     For k ■ 1,...,K solve: 

<v 
min    (c + f, )x 

k 

(A + D, ) x > b + r, 
k      — k 

x.  integer,  j   e J 

where f   ,  D ,  and r   are conformable with c. A, and h respectively. 

Cur goal is.to give prescriptions for solving the PILP in an 

efficient manner.     In chapter IV, three solution priorities were 

outlined:     serial,   lexicographically serial,  and parallel.    The reader 

will recall that only the first two priorities were considered in our 

computational studies,  since the parallel approach seems to be dom- 

inated by both of the other approaches.    In this chapter we shall 

reduce consideration to only one approach, namely, the serial. 

The lexicographically serial approach   (l.s.a.)  has one inherent 

weakness.     I't is  that individual   (P. )   are not solved to ootimality  in 
k 

any preordained order. For the analyst who must solve the general PILP, 

this could be disastrous, given a limited computer budget.  In tha 

l.s.a. there is no way to monitor or control the amount of computer 

time spent on a particular (P ) . In fact, after an inordinate amount 

of computer time has been used, it is possible that only minimal 

progress may have been realized in the solution of each (P ) . 
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Furthermore,  we point out that the primary advantages of the l.s.a. 

can be overcome by clever implementation of a serial approach.    Two 

advantages of the  l.s.a.  are tho small amount of bookkeeping calculations 

juid core storage  required.     However,   for more  difficult PILPs,   the 

bookkeeping time becomes  insignificant,  since  the time  required for 

solving the primary relaxation at each node generally is the lion's 

share of total computation  time.     This was manifested in the facility 

location problem of chapter VII,  where over 90% of total computation 

time was devoted to the solution of transportation problems only.     For 

more difficult problems,  computer core  limitations impose serious 

restraints on the  serial approach.     This  is avoided in the l.s.a.. 

However by using  an interactive serial  approach   (i.s.a.)   as outlined 

in d      '.er VII,  node  information  is stored either on high speed disk 

or tape,  and hence the core storage problem is  alleviated.    A third 

advantage of l.s.a.   is the reoptimization capability from problem to 

problem in the PILP.     That is,  at a given node  the optimal bounding 

problem relaxation solution for say,   (CP  ),   is used as  a starting 

point for the solution of the relaxation  for   (CP  ) .    Oftentimes this 

reoptimization technique can realize significant savings in computation 

time.    This scheme may be  used in the  serial  approach as well,  by 

simply storing  the optimal basis   (when LP is used as the primary relax- 

ation)   for the relaxation of  (CP  )  on disk or  tape.     Then, when the 

relaxation of   (CP  )   is to be solved,  the corresponding basis  can be 

retrieved and used as the  starting basis.    Of  course this retrieval 

incurs a setup  time,  but as pointed out earlier,   setup time is 

insignificant for more difficult problems.     Thus,  the  advantages of 
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of the l.s.a.  can be neutralized by judicious use of an i.s.a.. 

We now analyze the i.s.a.,   and point out the more important 

factors in the implementation of such a method.     By incorporating the 

human factor into the process, not only  is closer control in monitoring 

the computation process possible, but greater flexibility in solution 

strategies can be realized.    An i.s.a.   allows the analyst to glean 

information from the solution process  for  (P )   in order to solve   (P ) 

more efficiently.    There are at least  four sources of this information. 

They are: 

• an optimal solution for   (P^ 

• root node penalties and a branch and bound tree  for  (P..) 

• success of branching criteria    in the branch and bound tree 

• relative effectiveness of various fathoming tests. 

Each of these sources can be most helpful in planning a solution 

strategy  for  (P-) .     In the following few paragraphs we sh^ll. analyze 

each of these sources. 

Various  feasibility  recovery techniques    have been presented for 

the special problem classes of  chapters V,VI,  and VII.     For the general 

PILP,  such techniques may or may not apply,  depending on  the type of 

parameterization.     Therefore in order to be assured of flexibility in 

the feasibility recovery technique,  it may be advisable  to have the 

analyst  apply ad hoc techniques  for obtaining a  feasible solution to 

(P  )   from an optimal   (or just  feasible)   solution  to  (P..).     Such 

techniques,  of course, can be coupled with a computerized optimization 

scheme,   for example, where all integer variables are fixed to a specific 

value. 
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The root  node penalties and the branch and bound tree generated in 

solving  (P  )   can be used as a guide in generating an initial separation 

for  (P ).     First,  consider the penalties generated at the  root node  for 

(P.).    Such penalties are generally calculated in order to choose 

branch variables.     They may be LP based,  or they may be a by-product 

of a Lagrangean relaxation.       Lagrangean penalties can be 

quite a bit stronger,  and at the same time require fewer calculations 

(Geoffrion   [1973]).     By ranking the absolute values of these penalties 

in descending order,  one can get some feeling for the  "important?" of 

the individual integer variables.    Such a ranking is valuable since in 

a branch and bound process it is preferable to branch on variables 

which have large penalties,  early in the branching scheme.    After  (P  ) 

has been solved and the root node penalties have been ordered for  (P ) , 

the root node penalties for  (P.)  are calculated and ordered also.    By 

comparing the    orderings for  (PJ  and  (P.), one can get some indication 

of whether the "important" variables in  (P.)  are  "important" in   (P_) 

also.     If this is  the case,  it is reasonable to assume that the branch 

and bound tree for   (P..)  will generate a "good"  initial  separation for 

(P-).     If,  on the other hand,  the orderings are quite different,  the 

branch and bound tree  for   (P )  may generate a relatively poor initial 

separation for  (P-) .     In this case it may be better to either solve 

(P_)  with no initial  separation, or to use some separation based on 

the root node penalties for  (PJ  with little or no input  from the  (P..) 

solution process. 

Considering the case where the root node penalty orderings are 

reasonably correlated,  a number of possible choices exist for the 
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generation of an initial separation. The simplest, of course, is to 

use the frontier of fathomed nodes from the branch and bound tree for 

(P ) .  However, as we have seen in chapterw V and VII uucli a separation 

may be rather large. A number of modifications can be made which 

reduce the size of the initial separation, while still retaining the 

power of the separation. First, variables which were pegged to a 

specific value can  be "collapsed out" of the tree (cf. chapter VII.B). 

Second, branches which would not have been made if the optimal solution 

to (P.) had been known at the beginning of the solution process can  be 

eliminated.  These additional branches can occur if the optimal 

solution value for (P ) './as not found until late in the branching 

process. In this case, the additional branches were made because the 

fathoming by value test used an inferior incumbent value. Selected 

branches may also be eliminated if the parent node of the branches had 

a relaxation value "close" to the optimal solution value for (P ) . 

Thus the node was "almost" fathomed, but since it just missed being 

fathomed, a branch had to be made.  Since our general supposition in 

the serial method is that if a node is fathomed for (P.), it will 

probably be fathomed for (P ) as well, we see that it is reasonable to 

include nodes which are "almost" fathomed in our collection (and to 

eliminate the successor nodes of these nodes from the collection). 

Still another method for > educing the size of the initial separation 

is to use only those branches which are on the optimal path.  That is, 

the path from the root node to the node where the optimal solution 

was found.  See figure below. 
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For the case where the root node penalty orderings for (P ) and 

(P ) are not well correlated, another initial separation based on the 

(P ) root node penalties can be generated.  Specifically, we may commit 

a number of variables as branch variables using the (P ) penalty 

ordering. See figure below. 

Initial separation for (P ) 
using root node penalty ordering 

In this case the left hand branch constrains tLe variable to its 

"favorable" value as deduced from the penalties.  The variable with 

the largest absolute penalty is committed first, the second largest 

second, etc. 

The relative effectiveness of branching criteria for   (P ) may be 

used in formulating the branching criteria    for  (P  ) .    A measure of 

the effectiveness of a branching criterion is the number of "mistakes" 

made in the branch and bound process.    A "mistake"  is defined to be 

investigation of the x.  * 1 branch first,say, when the x.  ■ 0 branch 

133 

  ... 



■ 

contains  an optimal  solution  for   (P.).     That  is,  the branching criterion 

indicates that the x,   >» 1 branch is preferred over the x    « 0 branch, 
i i 

when in fact the x,   = 0 branch contains an optimal solution.    By 

keeping track of the mistakes 'n a branch and bound tree, one can 

identify a threshold penalty value below which the branching criterion 

may no longer be reliable.    Furthermore it may be possible to identify 

specific variables  for which the branching criterion is unreliable. 

By categorizing variables according to their penalty indicators for 

(P  )   and   (P )   as well as according to the anticipated effect of the 

parameterizatiou on each variable, one can  "predict" the reliability 

of the   (P  )  penalty indicator for each variable.    The  following display 

delineates the possible cases.    In using this display, we assume that 

an optimal solution to  (P  )  has been found,   that the  root ncde penalties 

have been calculated for  (P  )  and  (P  ) ,  and that ein  intuitive analysis 

has been made concerning the effect of the parameterization on each 

variable.    Further we assume that all integer variables are 0-1. 

Penalty  Indicator 
for (P^ 

Penalty Indicator 
for  (PJ 

•   indicator agrees indicator agrees 
with optimal solution      with penalty indi- 
value in   (P  ) cator for  (P  ) 

Reliability of Penalty 
Indicator for   (P ) 

a) very reliable if 
param.  tends to keep 
variable at same value 
b) reliable if opposite 
of a) 

•  indicator agrees indicator disagrees 
with optimal solution      with penalty  indi- 
value in  (P..) cator for (P  ) 

c) uncertain but tending 
to be reliable if param. 
tends to change value 
of variable 
d) very uncertain  if 
opposite of c) 

•   indicator disagrees      indicator agrees 
with optimal solution      with penalty  indi- 
value in   (P ) cator for  (P  ) 

e) uncertain but tending 
to be reliable if param. 
tends to change value 
of variable 
f) very uncertain  if 
opposite of e) 
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•   indicator disagrees      indicator disagrees g)   uncertain but tending 
with optimal solution      with penalty indi- to be reliable if param. 
value in   (P ) cator for   (P ) tends  to keep variable 

at same value 
h)  very uncertain if 
opposite of g) 

By categorizing each variable by its reliability,  one is able to 

modify the branching criterion in at least two ways.    First,  a threshold 

for variables can be established,  below which variables  should be chosen 

for branching by some other criterion.    Second,  if a reliable variable 

and an uncertain variable are being considered for becoming the next 

branch variable, the reliable variable should always be chosen.    Thus 

it is possible to modify branching criteria through the use of root 

node penalty indicators for  (P  )   and  (P.),  as well as by  intuitive 

tendencies deduced from the type of parameterization. 

The fourth source of information for making the  (P  )   solution 

process more efficient is the effectiveness of various  fathoming tests. 

For example,  if some conditional logical tests were ineffective  for 

(P  ), then one might consider the elimination of such tests for  (P_) • 

Similarly, if calculations which attempt to tighten the primary 

relaxation generally fail  for  (P ),  they might be eliminated for  (P ). 

In conclusion,  the  i.s.a.   is  a very flexible approach which 

allows  the analyst to modify  solution techniques  in such  a way that 

the experience gleaned in solving   (P )   is used to maximum advantage 

in the solution procedure for  (P ) . 

B.    Future Research 

In this section we give a brief outline of topics in the PILP 

area which are fertile for further research. 
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One such area is the study of the optimal solution as a function 

of a specific parameterization.    We have alluded to this in chapters 

II  and III.     Hopefully,   stronger and more useful   results can be  devel- 

oped for other problem classes which take advantage of the knowledge of 

an optimal solution for one problem in order to solve a closely related 

problem.    Such properties as continuity, monotonocity,  and convexity of 

the optimal solution   (possibly  in certain components)   and of the optimal 

solution value would seem to be worth seeking. 

Still another area  is the use of other methods  such as cutting 

planes and group theory either alone or in conjunction with a branch 

and bound approach.     We have outlined a rudimentary cutting plane 

approach in chapter I.     It may be that such an approach would be quite 

effective.    More premising,  however,  might be the incorporation of a 

cutting plane capability in a branch and bound scheme. 

Third,  a parametric: capability must be designed  for use in conmer- 

cial ILP codes.     An  interactive serial method as outlined in section A 

of this chapter «rould seem to permit relatively simple and inexpensive 

implementation. 

Fourth,  it would  seem likely that the  solution method of chapter 

V.D can be extended to  certain nonlinear parameterizations where the 

optimal objective value  is a concave   (for minimization)   function of 6. 

Fifth,  we note that techniques  for parallelizing computations 

would be most effective  in a PILP context.     Such an  approach would rely 

on the  implementation  of specific computer data structures.     Further- 

more,  the advent of  fourth generation computers  such  as ILLIAC  IV which 

performs computations  in parallel should also have a  telling impact on 

PILP algorithms. 
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In conclusion, we surmise that parametric methods in integer pro- 

'jianininq will assume greater importance as ILP solution methods improve. 

Just as in LP, where parametric analysis has become an  expected and 

useful part of moat solution studies, we expect the same to occur in 

ILP. We acknowledge that our study of PILP is just a beginning.  The 

true test of a method lies in its use by those who can benefit by its 

availability. 

« 
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